This presentation contains forward-looking statements that involve substantial risks and uncertainties. All statements, other than statements of historical facts, contained in this presentation, including but not limited to, statements regarding our strategy, future operations, future pre-clinical and clinical trial plans and related timing of trials and results, research and development, future financial position, future revenues, projected costs, prospects, therapeutic potential of our products, plans and objectives of management, are forward-looking statements. The words “aim,” “anticipate,” “believe,” “estimate,” “expect,” “intend,” “may,” “plan,” “predict,” “project,” “target,” “potential,” “will,” “would,” “could,” “should,” “continue,” and similar expressions are intended to identify forward-looking statements, although not all forward-looking statements contain these identifying words.

Forward-looking statements represent our management’s beliefs and assumptions only as of the date of this presentation. We may not actually achieve the plans, intentions or expectations disclosed in our forward-looking statements, and you should not place undue reliance on our forward-looking statements. Actual results or events could differ materially from the plans, intentions and expectations disclosed in the forward-looking statements we make. The forward-looking statements contained in this presentation reflect our current views with respect to future events, and we assume no obligation to update any forward-looking statements except as required by applicable law. These forward-looking statements are subject to a number of risks, uncertainties and assumptions, including those that may be described in greater detail in the annual report filed on Form 20-F for the year ended December 31, 2016 that we have filed with the U.S. Securities and Exchange Commission (the “SEC”) and any subsequent filings we have made with the SEC. We have included important factors in the cautionary statements included in that annual report, particularly in the Risk Factors section, and subsequent filings with the SEC that we believe could cause actual results or events to differ materially from the forward-looking statements that we make.
Our mission and strategy

ProQR was founded to find a treatment for CF

- Less than 10% of genetic diseases have a treatment
- Creating treatments for severe rare diseases where we can have a big impact

Build strong foundation

- Experienced team with proven track record
- Top-notch science and collaborators
- Broad IP estate

Treat Genetic Diseases

Create valuable pipeline

- Diversified product pipeline
- Focused on high unmet medical need and accelerated development pathways

Build a sustainable business

- Best-in-class products
- Achievable commercial strategy in rare diseases
- Drive shareholder value

Elegant & highly targeted approach
- Emergent RNA field with 5 approved products
- Established modality through >20 years of experience (delivery, safety, manufacturing, etc.)

RNA therapeutics
ProQR: 2012 - now
Strong foundation under solid company

Advance-ments to show for it

Rapidly advanced company

Top notch Scientific collaborators

In-house experts in many disciplines

Strong team

Track record of success

Dinko Valerio

Henri Termeer

James Shannon

ProQR Therapeutics - R&D Day 2017
ProQR: 2012 - now
Strong foundation under solid company

Management team

- Daniel de Boer
 Chief Executive Officer
- Noreen Henig
 Chief Medical Officer
- Gerard Platenburg
 Chief Innovation Officer
- Smital Shah
 Chief Financial Officer
- René Beukema
 Chief Corp. Development Officer & General Counsel
- Robert Cornelisse
 Chief People & Organization
- David Rodman
 Chief Development Strategy Officer

Supervisory board

- Dinko Valerio
 Chairman
- James Shannon
- Paul Baart
- Antoine Papiernik
- Alison Lawton

Strong team

- Rapidly advanced company
- Top notch Scientific collaborators
- In-house experts in many disciplines
- Track record of success
- Advance-ments to show for it
ProQR: 2012 - now
Strong foundation under solid company

- Advance-ments to show for it
- Rapidly advanced company
- In-house experts in many disciplines
- Track record of success
- Strong team
- Top notch Scientific collaborators

150 employees in EU and US work on discovering and developing therapies
ProQR: 2012 - now

Strong foundation under solid company

Rapidly advanced entrepreneurial company

- **2014:** In 2 years from foundation to Nasdaq IPO, raising ~$200M
- **2015:** In 3 years from IP to start global clinical trial
- **2016:** In 4 years to clinical PoC in lead product
- Unique operating model with product focused biz units enabling rapid development of company and pipeline
ProQR: 2012 - now
Strong foundation under solid company

- Rapidly advanced company
- Track record of success
- Strong team
- In-house experts in many disciplines
- Top notch Scientific collaborators
- Advances to show for it

Top notch science and collaborators
ProQR: 2012 - now
Strong foundation under solid company

Positioned for success

- QR-010 (CF) with positive clinical data
 - Phase 1b top line data expected in September 2017
 - Phase 2 to start in 2018
- QR-110 (LCA 10) IND clearance for clinical trial
 - IND cleared, first patient to be dosed soon, trial completed in 2018
- QR-313 (DEB) clinical trial to start in 2018
 - Clinical trial to start and readout in 2018
- Discovery pipeline that has the potential to deliver new IND every year
 - Ophthalmology, Axiomer®
- Cash position (end Q1 2017): € 52.1M
 - Runway into Q3 2018
Therapeutic Strategy

- Patient centric: Best-in-class high impact products for patients in need
- Well understood causality: Single gene defect leading to disease manifestation
- Local delivery: Feasible delivery route to target organ
- Genetic rare diseases: Limited treatment options, viable commercial strategy
- RNA therapy: Highly specific approach for a wide range of mutations
- Accelerated development: Accelerated development strategies to treat patients faster
Key programs in ProQR pipeline

Cystic Fibrosis
- QR-010 for F508del cystic fibrosis
 - Positive clinical data in NPD biomarker study
 - Phase 1b study top line data expected in September 2017

Inherited blindness
- QR-110 for LCA10
 - Pipeline
 - QRX-411 for Usher syndrome
 - QRX-421 for Usher syndrome
 - QRX-504 for FECD
 - QRX-1011 for Stargardt's Disease

Debilitating skin disorders
- QR-313 for DEB
 - Pipeline
 - QRX-323 for DEB
 - QRX-333 for DEB
 - QRX-343 for DEB

Highlights Innovation pipeline
- Axiomer®
 - Novel RNA editing platform technology
 - Direct ADAR to make specific edits in RNA
 - >20,000 G>A mutations
Cystic fibrosis due to F508del mutation

Presenter: Noreen Henig
Cystic fibrosis due to F508del mutation

- High unmet medical need
- Lung & other organs
- Limited life expectancy of 27 years
- Most common mutation affects ~65,000 patients
Cystic Fibrosis is a heterogeneous population

- More than 2,000 CFTR mutations known
- F508del patients
 - Variable drug response within F508del population
 - Expected that several different therapies are needed to treat different subgroups of F508del population
- Beyond QR-010 for F508del
 - RNA therapies have potential to target stop-codon mutations
Cystic Fibrosis is a heterogeneous population

- More than 2,000 CFTR mutations known
- F508del patients
 - Variable drug response within F508del population
 - Expected that several different therapies are needed to treat different subgroups of F508del population
- Beyond QR-010 for F508del
 - RNA therapies have potential to target stop-codon mutations
QR-010 for F508del cystic fibrosis

Differentiating product profile

- **INHALED DRUG**
 for lung delivery and systemic uptake

- **SINGLE AGENT for F508del**
 to treat underlying cause of disease

- **CONVENIENT AT HOME DOSING**
 3 times a week or less in under 15 minutes

- **AIMS TO STOP PROGRESSION OF DISEASE**
 or prevent disease and improve quality of life
QR-010: RNA target comes with advantages

- Single agent
- Low treatment burden
- No predicted drug-drug interactions
- No predicted carcinogenicity
- No predicted teratogenicity
QR-010 for F508del cystic fibrosis

Patients are ill because of absence of CFTR function. QR-010 has shown to restore CFTR function.

QR-010 has been found safe and well tolerated in ongoing clinical trials.

Smart development program to reduce development time to approval.

Inhalation delivers effectively to lung and distributes to other organs.

QR-010 restores CFTR function in CF patients.
Bringing QR-010 to CF patients
Two Clinical Trials by mid-2017

PHASE 1b - PQ-010-001 Safety, Tolerability, Uptake

- Safety and tolerability to date
- Demonstration of uptake into blood stream following inhalation after one dose
- Exploratory efficacy data at end of study

Study -003
To begin 2018

NPD - PQ-010-002 Proven ability to restore CFTR function

Nasal potential difference biomarker study
Nasal Potential Difference: Direct measurement of CFTR function

- NPD is the only direct in vivo measurement capable of separating sodium and chloride transport
- NPD has been used as an important endpoint in clinical trials evaluating therapeutic agents
PQ-010-002 Study Design

Open-label NPD study in F508del CF subjects

- 8 homozygous and 8 compound heterozygous (all-comers) subjects >18 years old
- Multiple dose design: 12 doses (3 per week x 4 weeks)
- Intranasal administration
- 5 expert participating sites in EU (CTN) and US (TDN)

Endpoints:
- CFTR-mediated total chloride transport (primary)
- Other NPD parameters
- Safety, SNOT-22 and NERS assessments
- Sweat test (Day 1, 15, 26, 47)
QR-010 restores CFTR function

Results of “NPD” Study

Key takeaways:

- Strong response in CFTR mediated chloride transport
- Statistically significant response per-protocol subjects
- Durable response 21 days post treatment
- All secondary measurements are supporting restoration of CFTR function
- Irrespective of the chosen method of analysis an improvement is observed
- Max Basal PD is direct measurement of ENaC activity as measured by sodium transport
- Basal PD confirms functional data for CFTR activity
- All secondary measurements are supporting restoration of sodium transport
- Irrespective of the chosen method of analysis an improvement is observed
QR-010: CFTR levels that are expected to be disease modifying

- **50% of CF patients**
 - **Non-cystic fibrosis NPD**
 - -6.6 mV
 - TDN Center of CFTR detection

- **Total Chloride Transport**
 - Classical CF with severe phenotype like F508del
 - Rowe et al, Methods Mol Biol, 2011
 - CF patients with milder phenotype
 - Rowe et al, Methods Mol Biol, 2011
 - NPD effect range of known disease modifying activity*
 - -3.5 mV
 - -5.4 mV
 - Homozygous F508del + QR-010
 - -4.1 mV
 - Sermet-Gaudelus et al, NACFC, 2016

* Based on responses in ivacaftor studies in G551D

Interpretations are adapted from publications
Phase 1b Safety and Tolerability Study
Top line data expected to be announced in September 2017

- 64 homozygous F508del CF patients (>18yrs)
- Inhalation through Pari eFlow nebulizer
- Participating investigators: 27 sites EU (CTN) and North America (TDN)
- All 4 SAD cohorts and three MAD cohort have been completed and reviewed by the DSMC
- MAD Cohort 7: All subjects completed dosing

Endpoints:
- Safety, tolerability, and pharmacokinetics
- Exploratory efficacy
 - FEV₁
 - CFQ-R Respiratory Symptom Score
 - Weight gain
 - Sweat chloride
QR-010 is measurable in serum following single dose administration

Concentrations of QR-010 Measured in Serum Following a 50 mg Dose

- Single Dose Cohorts Confirm QR-010 is absorbed following inhalation
- Single dose safe and well tolerated
- 25 and 50 mg with detectable QR-010 in serum
Phase 1b:
Explanatory efficacy endpoints

<table>
<thead>
<tr>
<th>Efficacy Outcome</th>
<th>Description</th>
<th>Type</th>
<th>Strength</th>
<th>Weakness</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEV1</td>
<td>Measures airflow</td>
<td>Surrogate</td>
<td>• Well standardized</td>
<td>• Variation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Lung specific</td>
<td>• Effort dependent</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Repeatable/Reliable</td>
<td>• Influenced by con meds</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Less sensitive in well subjects</td>
</tr>
<tr>
<td>CFQ-R RSS</td>
<td>Disease specific patient reported outcome measured</td>
<td>Clinical outcome</td>
<td>• Well standardized</td>
<td>• 2 week recall period</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Useful over most ages</td>
<td>• Learning effect</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Translated widely</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>Increases in weight</td>
<td>Biomarker</td>
<td>• Objective sign of health</td>
<td>• Long term only</td>
</tr>
<tr>
<td></td>
<td>improves overall health in CF</td>
<td></td>
<td>• Easy to assess</td>
<td>• Influenced by other factors</td>
</tr>
<tr>
<td>Sweat Chloride</td>
<td>Indirect measure of CFTR function</td>
<td>Biomarker</td>
<td>• Well accepted</td>
<td>• Oligos may not get to glands</td>
</tr>
<tr>
<td>Nasal Potential</td>
<td>Direct measure of CFTR function</td>
<td>Biomarker</td>
<td>• Well accepted</td>
<td>• Technically hard</td>
</tr>
<tr>
<td>Difference</td>
<td></td>
<td></td>
<td></td>
<td>• Few reliable centers</td>
</tr>
</tbody>
</table>
Exploratory efficacy: Absolute Change in FEV₁

- **Description**
 Measures airflow

- **Type**
 Surrogate endpoint

- **Strength**
 - Accepted by Regulatory Agencies
 - Easy to perform; well standardized
 - Historical/registry data from other drugs in CF and other diseases
 - Lung specific
 - Repeatable/Reliable

- **Weakness**
 - Diurnal variation
 - Influenced by con meds
 - Ceiling effect for improvement
 - Reflect large airways health so can be insensitive in early stage disease
 - Safety vs efficacy measurement?
 - Serial assessment in our trial

<table>
<thead>
<tr>
<th>Drug</th>
<th>Change (4 weeks)</th>
<th>Source(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orkambi EMA ePAR</td>
<td>3.0%</td>
<td></td>
</tr>
<tr>
<td>TEZ/IVA in homozygous F508del patients (ECFS 2013)</td>
<td>4.8%</td>
<td></td>
</tr>
<tr>
<td>Kalydeco in G551D patients (B.W. Ramsey et al. 2011 NEJM & J. Davies et al. 2013 Lancet resp. med.)</td>
<td>10.6%</td>
<td></td>
</tr>
<tr>
<td>QR-010 in homozygous F508del patients</td>
<td>8.67%</td>
<td></td>
</tr>
</tbody>
</table>

To be reported in September (4 weeks)
Exploratory efficacy: CFQ-R RSS

- **Description**
 Disease specific patient reported outcome measured

- **Type**
 Clinical outcome

- **Strength**
 - Used in most CF trials as PRO
 - Independent measure from FEV1
 - Well standardized
 - Useful over most ages
 - Translated widely

- **Weakness**
 - Significance poorly understood
 - Potential for recall bias

- **To be reported in September (4 weeks)**
 - **QR-010** in homozygous F508del patients
 - Orkambi in homozygous F508del patients (C.E. Wainwright et al. 2015 NEJM)
 - Kalydeco in G551D patients (B.W. Ramsey et al. 2011 NEJM)
 - TEZ/IVA in homozygous F508del patients (VRTX press release 29 March 2017)
Exploratory efficacy: BMI (Weight)

- **Description**
 Increases in weight improves overall health in CF

- **Type**
 biomarker

- **Strength**
 - Objective sign of health other than lung function
 - Easy to assess

- **Weakness**
 - Long term only
 - Influenced by other factors (indirect drug effect)

- **QR-010 in homozygous F508del patients**
 - (C.E. Wainwright et al. 2015 NEJM)

- **Orkambi in homozygous F508del patients**
 - (VXRT press release 29 March 2017)

- **Kalydeco in G551D patients**
 - (B.W. Ramsey et al. 2011 NEJM)

- **TEZ/IVA in homozygous F508del patients**
 - (VRTX press release 29 March 2017)

- **BMI no diff with placebo by 24 weeks**
 - **0.24 (by 24 weeks)**

- **To be reported in September (4 weeks)**
 - **0.94 (by 24 weeks)**

- **QR-010 in homozygous F508del patients**
 - To be reported in September (4 weeks)
Exploratory efficacy: Sweat Chloride

- **Description**
 - Indirect measure of CFTR function—high Cl- diagnostic for CF
- **Type**
 - biomarker
- **Strength**
 - Well accepted dx tool
 - Non invasive and performed by all CF centers
- **Weakness**
 - Oligos may not get to glands
 - No direct correlation with clinical response

- 12.6 Mmol/l
- 6.0 Mmol/l
- 47.9 mmol/L

To be reported in September (4 weeks)

- **Orkambi** in homozygous F508del patients (Bolye et al. 2014 Lancet Resp)
- **TEZ/IVA** in homozygous F508del patients (ECFS 2013)
- **Kalydeco** in G551D patients (B. W. Ramsey et al. 2011 NEJM)
- **QR-010** in homozygous F508del patients
Nasal potential difference

- **Description**
 Direct measure of CFTR function in relevant tissue

- **Type**
 biomarker

- **Strength**
 - Well accepted

- **Weakness**
 - Technically hard
 - Few reliable centers

QR-010 restores CFTR function in subjects homozygous for F508del

- **Orkambi** in homozygous F508del patients (C.E. Wainwright et al. 2015 NEJM)
 -5.4mV

- **TEZ/IVA** in homozygous F508del patients (ECFS 2013)
 -3.5mV

- **Kalydeco** in G551D patients (B.W. Ramsey et al. 2011 NEJM)
 -4.1mV

- **QR-010** in homozygous F508del patients
 Not reported
QR-010 Innovation to treat F508del CF

- Innovative RNA approach as single agent therapy
- Safe and well tolerated to date
- Systemic uptake detected after single dose
- Restoration of CFTR activity observed in NPD biomarker trial in homozygous F508del patients
Nasal Potential Difference:
Advances in Methods for Clinical Trials

Steven M. Rowe, MD MSPH
UAB Center for CFTR Detection (CCD)
CF-Therapeutics Development Network

Funded by CFF and NIH
History of Nasal Potential Difference (NPD)

- NPD was originally described as a test to diagnose CF – effectively separating healthy individuals who had functional CFTR protein from individuals with CF.

- Unlike sweat chloride, NPD is a direct measure of CFTR function, measuring chloride transport in the respiratory epithelium.

- It can also simultaneously measure activity of the sodium channel ENaC, which also regulates ASL depth and mucus clearance.

- NPD has been used in clinical trials as a direct measure of CFTR function, but has generally predicted results with subsequent clinical testing.
Nasal Potential Difference

Rowe et al. Methods Mol Bio 2011
Relationship Between In Vitro and In Vivo Results with Ivacaftor: NPD

In Vitro Results (HBE)

- Non-CF HBE
- G551D-HBE
- G551D-HBE 10 μM VX-770

% wild-type ion channel activity

Low Cl⁻ + Forskolin
Amiloride response

CFTR Activity
ENaC Activity

In Vivo Results (NPD in VX-770 clinical trial)

- Normal
- CF (G551D) Placebo
- CF (G551D) VX-770 150 mg

% normal ion channel activity

Zero Cl⁻ + isoproterenol
Ringer’s
History of Nasal Potential Difference (NPD)

- One of the major challenges for the outcome measure is that requires operator skill, and there were significant variations in the technique and equipment used.

- To address this in an era of CF clinical testing, the Center for CFTR Detection has worked over many years to standardize NPD for use in clinical trials.

- After several iterations of improvement, standardization is now agreed upon by approved NPD centers in US and Europe.

- Techniques substantially improved sensitivity, within subject reproducibility, and ability to incorporate in rigorously designed clinical trials.
NPDs Standardization Effort

US NPDs

Original TDN SOPs

Revised TDN SOPs

Workshops

Site visits

International NPDs

Additional sites
US and non-US TDN and non-TDN

Strong need and interest to standardize

Status in 2008 for VX-770

Current SOP implemented by TDN and CTN

Strong need and interest to standardize.
Key Improvements to NPD

- Centralized blinded reading
- Standardized operating procedure
- Central sourced kits
- Electronic data capture
- Consistency across multiple study centers

This procedure has been adopted for all NPD studies since 2009, (and 2012 in Europe) improving interpretability of trial results.
Potential Difference Method Improvement

Solomon et al., Chest 2010; 138(4):919-28
Important Reductions in Artifact Frequency

• Reduced artifact frequency with non-perfusion compared to perfusion approach

• Observed in sodium and chloride measures

Solomon et al., *Chest* 2010; 138(4):919-28
Intraclass Correlation Amongst 5 NPD Scorers indicates Robust Correlation of Key Quantitative

<table>
<thead>
<tr>
<th>Intraclass Correlation of Qualitative Scores Amongst 5 NPD Scorers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
</tr>
<tr>
<td>Ringer’s</td>
</tr>
<tr>
<td>$\Delta_{\text{Amiloride}}$</td>
</tr>
<tr>
<td>TCC</td>
</tr>
</tbody>
</table>

TCC, Total Chloride Conductance ($\Delta_{0 \text{Cl}^- + \text{Isoproterenol}}$)

Solomon et al., JCF 2017
Implementation in ProQR-002

- Provided key opportunity to confirm mechanism of action for first in class oligimer
- Incorporated blinded, batched analysis via electronic data capture with strict a prior criteria
- High rate of interpretable tracings (94%)
- Concordance of chloride and sodium transport data provide confidence in overall findings
- Sensitivity analysis also supportive
QR-010 restores CFTR function

Results of “NPD” Study

Key takeaways:
- Strong response in CFTR mediated chloride transport
- Statistically significant response per-protocol subjects
- Durable response 21 days post treatment
- All secondary measurements are supporting restoration of CFTR function
- Irrespective of the chosen method of analysis an improvement is observed
- Max Basal PD is direct measurement of ENaC activity as measured by sodium transport
- Basal PD confirms functional data for CFTR activity
- All secondary measurements are supporting restoration of sodium transport
- Irrespective of the chosen method of analysis an improvement is observed
Significance of ProQR-002 Results

- While this was a nasal POC study, results affirm the hypothesis that QR-010 can restore CFTR function to F508del CFTR
- NPD has successfully predicted efficacy in subsequent studies; improved chloride and sodium transport is particularly meaningful
- There remains significant unmet need for the treatment of CF patients with one or two copies of F508del
Inherited Retinal Dystrophies

A major opportunity for RNA-based therapeutics

Presenter: Peter Adamson
Inherited Retinal Dystrophies

The Opportunity

A wide array of mutations within a variety of genes, encoded within both intronic and exonic regions, yields a significant opportunity to perform “corrective” RNA editing in IRDs.

There are consequently many thousands of molecular target mutations within 100s of genes associated with IRD.

Such genes can be in any retinal cell-types.
RNA editing in Inherited Retinal Dystrophies
Specificity of RNA approach and advantages of intravitreal delivery

• A wide-array of RNA defects can be altered
 Specific mutations, can be specifically targeted with a variety of approaches

• RNA editing allows normal level of gene-expression
 No toxic effects of supra-high expression of transgenes

• Specific and selective pharmacology
 20 and 21 mers show almost no off-target effects

• 2’Ome/PS-modifications allows efficient entry to cells,
 Particularly in the eye following IVT injection

• 2Ome-PS oligonucleotides display long retinal PK (months) vs vitreal PK (days)
 Allows for infrequent IVT dosing

• Low Systemic exposure
Ophthalmology Pipeline

QRX-421 Ex13 Usher Syndrome

QRX-411 PE40 Usher Syndrome

QRX-504 Fuchs (FECD)

QR-110 LCA10 ~2,000 patients

Several undisclosed targets

QRX-1011 Stargardt's Disease

✓ Several interesting targets selected
 • Next step: sequence optimization

✓ Molecule sequence optimized
 • Next step: chemistry optimization

✓ Clinical candidate selected
 • Ready to start IND-enabling studies

✓ IND open
✓ CTA Approval (BL)
✓ Fast Track Designation
Targeting of oligonucleotides in the retina
Intravitreal oligonucleotides target all cellular layers of the retina

Immediately post IVT dose

7 days POST IVT dose

Dose 1µl 25 µg/µl in c57/bl6 mice

Cy5-QRX-411 DAPI FAM-6-QR-110
Eye cup model forming retinal structure

- A real 3D model of human patient retina containing all retinal cell layers
- Can be grown from any patient with any IRD
- Eye-cups have human mutation
- Present and show the effect of the mutation in human cells
- Can test human therapeutic molecule instead of surrogate
- Has been used instead of animal efficacy data in successful regulatory submissions in US and EU

Ramsden et al., 2016
Patient-derived iPSC optic cups

Optic cup is an organoid model containing differentiated photoreceptor cells

Recoverin cone-arrestin

Detail: Rhodopsin
Detail: L/M-opsin
Detail: S-opsin

Porfitt et al., 2016
QR-110

Splice correction for p.Cys998X causing Leber’s congenital amaurosis Type 10 (LCA10)
QR-110 for LCA10

No therapy available

Eye

Lose sight in first years of life

~2,000 patients with LCA10 through p.Cys998X in Western world

Other mutations

LCA2 through RPE65

Eye

Lose sight in first years of life
LCA10 Clinical Phenotype

• Most severe form of early childhood blindness
• Very early severe vision loss with onset in the first months of life
• Symptoms include sensory nystagmus (involuntary eye movement), amaurotic pupils, oculo-digital signs, and absent electrical signals on electroretinogram (ERG).
• Is associated with a cone-sparing macular presentation
QR-110 for LCA10

Splice correction for p.Cys998X CEP290 mRNA

In wild-type cells, CEP290 maintains cilium structure and enables normal protein transport.

In p.Cys998X-LCA10 cells, protein transport is hampered and the outer segment degenerates.

Exclusion of the cryptic exon from the mutated mRNA leads to wild-type CEP290 protein.
QR-110 for LCA10
Splice correction for p.Cys998X CEP290 mRNA

QR-110 - Asset Characterization
- Single stranded 17-mer RNA oligonucleotide
- P=S and 2’O-Me chemically modified for stability and uptake
- Well understood MoA
- Designed to target pCys998X CEP290 mutation
- IVT administration, no detectable systemic exposure

QR-110 - Data
- >95% mRNA editing efficiency in human eye cups
- Demonstration of CEP290 full-length protein by blot
- Ability to increase both number and length of cilia in LCA eye cups (functional response)
- Ability to distribute to photoreceptor layer after IVT injection
- IND and CTA open
- Fast-Track Designation granted
QR-110 corrects CEP290 mRNA in LCA patient Eye cups

Key takeaways:

- QR-110 shows strong pre-clinical PoC in eye cup retinal organoid model
 - Restoration of WT protein in dose dependent way was observed
 - QR-110 restored QT mRNA in dose dependent way
 - Optic cup model is sophisticated in vitro retinal structure
QR-110 treatment in optic cups shows increase in incidence and length of cilia

Untreated
3µM QR-110
Untreated
10µM QR-110

Arl13 PCN
Clinical study design – PQ-110-001

- Twelve p.Cys998X LCA10 patients; adults and children (>6yrs)
- Intravitreal injections in one eye
- Participating sites: major sites in EU (U Ghent) and US (UPenn, UIowa)
- Primary endpoints:
 - Safety, tolerability and pharmacokinetics
 - Exploratory efficacy:
 - FST, mobility testing, visual acuity, OCT, PRO, ERG, nystagmus tracking, pupilometry
- IND open
- FDA Fast-track designation
- CTA open (BE)
QRX-421
Splice correction for Usher’s syndrome (Exon 13 skip)
QR-421 for Ushers

No therapy available

Eye

Early onset

~12,000 patients with Exon 13 in USH2A in Western world

Other USH2A mutations
Clinical phenotype USH2A (RP) or NSRP

USH2A Symptoms: Pale optic nerve, thin vessels

- First manifestation is night blindness (Nyctalopia)
- Gradual loss of peripheral retina resulting in tunnel vision.
- Subsequent loss of central (macula) vision resulting in complete blindness
- Variable age of onset, but disease normally evident in late teen/early 20s
- Is associated with a cone-sparing macular presentation

From Sandberg et al. 2008
QRX-421 for Usher’s syndrome

USH2A exon 13 splice correction

In wild-type cells
Ush2A protein enables protein transport through the connecting cilium

In cells with the mutation
Ush2A protein is not active hampering protein transport through the cilium

Exclusion of mutated exon leads to restoration of functionality of Ush2a
QRX-421 for Usher’s syndrome
USH2A exon 13 splice correction

QRX-421 - Asset Characterization
- Single stranded 21-mer RNA oligonucleotide
- P=S and 2’O-Me chemically modified for stability and uptake
- Well understood MoA
- Designed to target USH2A exon 13 mutations
- IVT administration, based on studies with LCA QR-110 likely no detectable systemic exposure in animals

QRX-421 - Data
- Strong effect in mediating Ex13 deletion, minimizing Ex13/Ex12 deletion in patient derived optic cups
- Ability to generate Usherin protein which is correctly localized to the retina in Ex13 mutant fish (tool)
- Restores lost ERG in Ex13 mutant fish (functional response)
- Ability to distribute to photoreceptor layer after IVT injection
QRX-421 mediated exon 13 skip in vitro and in optic-cups

Erwin van Wijk, Radboudumc, Nijmegen, the Netherlands
AON targeting Ex13 skip modifies mRNA and restores protein localization in Zebrafish retina

Restoration of Ush2a localization in zebrafish eyes

RT-PCR: Ush2a Ex13m -/

<table>
<thead>
<tr>
<th></th>
<th>Untreated</th>
<th>Treated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exon 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exon 13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exon 14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ush2a antibody in fish retina showing localization at connecting cilia

<table>
<thead>
<tr>
<th></th>
<th>Wildtype</th>
<th>Ex13 mut</th>
<th>Ex13 mut + AONs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Co-staining with anti-centrin Ab showed Usherin localized at the connecting cilium

Erwin van Wijk, Radboudumc, Nijmegen, the Netherlands
Restoration of b-wave ERG to wild-type level following Exon-13 deletion

Exon 13 deleted mutant zebrafish

Bands have been Sanger sequenced and confirmed to be Ex13-skipped

Erwin van Wijk, Radboudumc, Nijmegen, the Netherlands
Overview: QRX-421 for USH2A Exon 13

- **mRNA profile restoration**: mRNA profile with exon 13 skip
- **Local (intravitreal) delivery to the eye**: Eye well validated target for oligo's. Efficient delivery to outer nuclear layer in the retina
- **mRNA profile restoration in eye-cups**: mRNA profile shows Ex13 Skip in patient-derived eye-cups
- **Restoration ush2a protein levels**: Significant increase in Ush2a protein levels
- **Functional restoration in Fish model**: Protein and ERG restoration established
- **Clinical candidate selected**: QR-421 selected as clinical candidate

Ready to go into Development

Ready to start IND-enabling studies
Clinical study design – QR-421 Ushers

- Intravitreal Injection of “worst eye” only
- Contralateral eye and subject’s baseline as controls
- Primary endpoints:
 - Safety, tolerability and pharmacokinetics
 - Pharmacodynamic endpoints:
 - OCT: Photoreceptor layer thickness (focus on OS layer) starting at 2w
- Main clinical end-points: efficacy/ biological activity
 - Visual Acuity
 - Visual Field
 - Full field ERG
- Ready to start IND-enabling studies
QRX-411
Splice correction for Usher’s syndrome type II PE40
QR-411 for Ushers

No therapy available

Eye

Early onset

~500 - 1,000 patients with PE40 in USH2A in Western world
QRX-411 for RP in Usher Syndrome

Splice correction for PE40 USH2A mRNA

In wild-type cells, Usherin maintains photoreceptor structure and enables normal protein transport.

In PE40 mutant cells, protein transport is hampered and the outer segment degenerates.

Exclusion of the PE40 region from the mutated mRNA leads to wild-type Usherin protein.
QRX-411 for Ushers syndrome
USH2A PE 40 splice correction

QRX-411 - Asset Characterization
- Single stranded 20-mer RNA oligonucleotide
- P=S and 2’O-Me chemically modified for stability, safety, efficiency and uptake
- Well understood MoA
- Designed to target USH2A PE 40 mutations
- IVT administration, based on studies with LCA QR-110 likely no detectable systemic exposure in animals

QRX-411 - Data
- >95% effect in mediating Ush2A PE40 mRNA in patient derived fibroblasts and optic cups
- Ability to edit human Ush2A PE40 mRNA in human knock-in transgenic fish
- Ability to distribute to photoreceptor layer after IVT injection
- Initial tolerability studies in rabbits shows similar profile to QR-110
In vitro proof of concept
Dose-dependent effect of QRX-411 on WT RNA in patient fibroblasts

Efficacy testing of QRX-411 in heterozygous patient fibroblasts

Copies of RNA

QRX-411

50 nM
25 nM
10 nM
In vitro proof of concept

QRX-411 restores WT RNA in patient-derived iPSC optic cups

Erwin van Wijk, Radboudumc, Nijmegen, the Netherlands
Overview: QRX-411 for USH2A PE40

mRNA profile restoration
mRNA profile restored to wild-type

Local (intravitreal) delivery to the eye
Eye well validated target for oligo's
Efficient delivery to outer nuclear layer in the retina

mRNA profile restoration in eye-cups
mRNA profile shows PE40 Skip in patient-derived eye-cups

Molecular restoration in Fish model
PE40 mRNA exclusion in human KI Tg fish

Clinical candidate selected
QR-411 selected as clinical candidate

Ready to go into Development
Ready to start IND-enabling studies
QRX-1011
Stargardt’s Disease
QR-1011 for Stargardt’s Disease

- Unmet medical need
- Eye
- Early onset
- ~7,000 patients with c.5461-10T>C in ABCA4 in Western world

Other ABCA4 mutations
Stargardt’s Disease

• Mutations in **ABCA4** gene destroys function of ABCA4 (> 800 known mutations in the ABCA4 causes STGD1)
• Target mutation ABCA4 c.5461-10T>C
• Approximately 7,000 patients
Stargardt’s Disease: Clinical Phenotype

- Most frequent form of inherited juvenile macular degeneration
- Manifests as central vision loss and progresses to complete blindness
- Median onset of disease approx. 17 years
- Loss of RPE cells (scotoma)
Prevention of Exon 39 skipping - Exon inclusion
QRX-1011 Screening

Exon 39

Hela
HEK293

Sequential transfection

Exon 1
Exon 39
Exon 1

MG3

-10T >C

Transfection

AONS

Analysis

RNA isolation
RT-PCR
ddPCR
Ophthalmology: QRX-1011 for Stargardt’s Disease

QRX-1011 drives inclusion of Ex39 in mutant ABCA4 mRNA
Ex39 inclusion demonstrated in mutant ABCA4 mutant mini-gene construct upon treatment with a number of oligo sequences

Cells isolated from patient ABCA4 c.5461-10T>C
Renal epithelial cell already isolated from patient urine. Cells will begin re-programming into eye-cups

Local (intravitreal) delivery to the eye
Eye well validated target for oligo’s
Efficient delivery to photoreceptors (ONL)

Development
Chemistry/sequence optimization ongoing
QRX-504
RNA modulation for Fuchs endothelial corneal dystrophy (FECD)
QR-504 for FECD3

Current therapy invasive and costly

Eye

Onset +50yrs

>250,000 patients with Repeat expansion in TCF4 in Western world

Other FECD mutations
Progressive degeneration of the cornea
• Reduced or loss of vision due to loss (of function) of corneal endothelial cells
• ~5% of middle-aged Caucasians have guttae, a hallmark of FECD. A subset of that group develops a severe phenotype
• Disease is associated with painful corneal blisters

FECD3 caused by mutations in TCF4 gene
• 75% of population with guttae have TCF4 expansions
• Formation of nuclear RNA foci that sequester splicing factors
• Foci lead to loss of function of endothelium cells

High unmet medical need
• Eye disorder, leading to blindness, 15,000 corneal transplants performed annually in the US due to Fuchs
Clinical Phenotype: Fuchs Endothelial Corneal Dystrophy

- Late onset (50-60 years) slowly progressing corneal dystrophy that usually affects both eyes
- Patients often awaken with blurred vision which improves during the day
- Visual acuity reduction
- Finally corneal swelling and clouding often requiring corneal transplantation

Corneal edema and clouding

Guttae
QRX-504 for FECD

- **Healthy**
 - TCF4 and MBNL1 regulate splicing of pre-mRNAs to produce spliced mRNAs.

- **FECD**
 - Mutated TCF4 RNA and MBNL1 form aggregates (foci), disrupting splicing.

- **QRX-504 treated**
 - QRX-504 targets the TCF4 RNA and releases MBNL1 to enable correct splicing of RNA.
QRX-504 for FECD

QRX-504 - Asset Characterization
- Single stranded 21-mer RNA oligonucleotide
- Sequence and chemistry fully optimized.
- P=S and 2’O-Me chemically modified for stability and uptake
- Well understood MoA
- Designed to target nucleotide expansion in FECD3 patients caused by mutations in the TCF4 gene
- IVT administration, no detectable systemic exposure

QRX-504 - Data
- Human TNR expanded TCF4 FECD3 CECs shown to have RNA foci and QRX-504 treatment reduces foci
- Human TNR expanded TCF4 FECD3 CECs shown to have MBNL-1 sequestrated with RNA foci and QRX-504 treatment releases MBNL-1
- Well understood MoA
- IVT administration shows QRX-504 uptake in CECs from mouse and rabbit
FECD patients with TCF4 mutations have RNA foci

FECD is caused by toxic RNA aggregation and MBNL-1 sequestration
QRX-504 reduces toxic foci

Patient #63, CTG 12/97

Mann-Whitney p = 0.002165

QRX-504 reduces foci in patient CECs (N=6)
QRX-504 reduces toxic foci and MBNL-1 sequestration
QRX-504 delivery to corneal endothelium
IVT administered QRX-504 shows robust uptake

Cy3-labelled-QRX-504, 48h post dose, 100ug IVT dose
Ophthalmology: QRX-504 for FECD

QRX-504 reduces toxic foci
mRNA of toxic foci removed upon QRX-504 treatment of primary corneal endothelial cells of FECD patients

QRX-504 reduces sequestration of MBNL-1
MBNL-1 sequestration is reduced upon QRX-504 treatment of primary corneal endothelial cells of FECD patients

Local (intravitreal) delivery to the eye
Eye well validated target for oligo's
Efficient delivery to corneal endothelium

Development
Ready for IND-enabling studies

ProQR Therapeutics - R&D Day 2017
Summary

Inherited Retinal Disease Program

- 1 Program in Clinical Development (LCA)
- 2 Programs at IND enabling stage (Ush)
- 1 Program at pre-clinical stage (STG)
- A number of other IRD targets in early pre-clinical evaluation

- Pre-clinical and clinical development approach is similar in all IRDs programs

- Strong focus of the use of human systems
- Use of patient eye-up models ensures translatability of validation and clinical dose rationale

Anterior Chamber Disease Program

- 1 Program at pre-clinical stage (FECD)
- Other targets under evaluation

- Strong focus of the use of human systems
- In FECD3 use of human corneal endothelial cells is key to project progression and success
FFB Science & Clinical Research Institute Overview

JUNE 2017

Stephen M. Rose, Ph.D.
The urgent mission of FFB is to drive the research that will provide preventions, treatments and cures for people affected by the entire spectrum of retinal degenerative diseases.
Diseases of Interest

Foundation Fighting Blindness supports research and clinical trials in orphan inherited retinal degenerations and dAMD

- Leber’s congenital amaurosis
- Stargardt’s Disease (juvenile macular degeneration)
- Usher syndrome
- Choroideremia
- X-linked retinoschisis
- Others (17 distinct retinal degenerations)

Definition of Orphan Disease:

Any disease affecting less than 200,000 individuals in the United States. (US National Institutes of Health) (NIH) Retinitis pigmentosa

Funding of dry age-related macular degeneration (AMD) is limited to areas not funded by pharma where there is potential cross-over value for juvenile macular degeneration (Stargardt’s Disease).
Foundation Fighting Blindness is the world’s largest non-governmental source of research funding for retinal degenerative diseases

- Funding the world’s leading retinal researchers and clinicians
- Funding innovative, cutting-edge research – sight-saving potential

Foundation Fighting Blindness science is internationally recognized as a lead in identifying and assessing scientific breakthroughs in any and all fields that can lead to new treatments and cures for retinal degenerative diseases

Foundation Fighting Blindness has raised more than $700 million over the last 45 years to support research

- In 2016 - $21 Million allocated to support 109 research projects

QUOTE: Dr. Stephen Daiger, University of Texas-Houston, “If you were to take the 1,000 most important research papers published in the past 15 years in the field of inherited retinal diseases, 900 have authors supported by the Foundation.”
Foundation Fighting Blindness Background

Historic Funding Allocation
1971 – 2016
>$700M

Research – Awards
$392,659,125
68%

Fundraising
18%

Management and General
6%

Public Health and Education
8%
One Organization – Two Entities

FFB: Foundation Fighting Blindness (Science)
- Parent organization
- Established 1971 as the Retinitis Pigmentosa Foundation
- A 501(c)3 non-profit
- Seek ROI and walk-in rights to IP
- Focus on early stage development of treatments

FFB CRI: FFB Clinical Research Institute (CRI)
- Focus on late stage development
- A 501(c)3 nonprofit
- Seek ROI on investments

Each organization has its own Board for governance
Foundation Fighting Blindness
Overall Strategy

Identify new innovative therapies
- Identify and fund research and development that accelerates innovative therapies for treatment of retinal degenerative diseases

Fund cutting edge research (Science)
- Supports basic research in retinal cell biology based on best chance to make significant advances in knowledge and technology to bring benefit to patients
- Supports early translational research to transition the basic knowledge into genetically and mechanism of action validated targets for intervention
- Support clinical centers
- Fund career development awards

Aggressively seek development and commercialization (CRI)
- Invests in most promising interventions through proof of concept in humans- Negotiate a fair return on investment for FFB CRI to allow further intervention development (although not the first priority)
- Provide expertise, management, and funding for the intervention to be developed successfully
- help secure global commercialization partnerships with pharmaceutical and biotech companies
- Partner with Pharma or Biotech to move intervention to FDA approval and commercialization so readily available to patients
- collaborate with universities, government and industry to identify path to accelerate development of new therapeutic approaches (Identification and validation of new Clinical endpoint, conduct of Natural History Studies, etc)
FFB Impact over Time on the iRD field

- 40 years of Grant funding >$393 M
- >500 Papers & publications
- >100 Patents Filed based on FFB supported research

2017 Status

27 therapeutics in pre-IND and IND phase-
27 ongoing clinical trials in iRD
FY16 Research by Disease

44% of the Research Portfolio supports RP-like diseases
Discovery of the first gene mutation causing an RDD (1989)
Discovery of 90% of the genes implicated to date in RDD
Identification of CFH gene (50% of all AMD)
First successful retinal cell transplantation in animals (1988)
Demonstration that Vitamin A can slow vision loss in retinitis pigmentosa
The Argus II artificial retina – early development supported by FFB
Neurotech Encapsulated Cell Technology (ECT) to deliver proteins to retina
Stem cells successfully differentiated into retinal cells (2009, Tom Reh)
Development of retinal cells from skin cells (Clegg, Gamm, Stone)
ACT clinical trial in at UCLA, Moorfields Eye Hospital
 - 30 years support Ray Lund
FFB Support Underlies Translation Into Clinical Trials

- Gene therapy for LCA2
- CNTF protein therapy for RP, AMD
- DHA (docosahexanoic acid) for XLRP
- DHA + Vitamin A for RP
- Valproic acid for ADRP
- StarGen™ gene therapy for Stargardt’s Disease
- Differentiated stem cell transplantation for Stargardt’s Disease, AMD
- UshStat™ gene therapy for Usher 1b syndrome
- ReNeuron
- jCyte
Usher 2A: Syndromic and Non-syndromic

- Usher 2A gene encodes Usherin, a 575.6 Kd protein in the connecting ciliary body of the photoreceptors and in sensory hair cells of the cochlea, it is associated transiently with the hair bundles during postnatal development.

- Ush2A gene responsible for highest %age of recessive retinitis pigmentosa without deafness.

- Genetically heterogeneous autosomal recessive disorder characterized by sensorineural hearing deficiencies at birth and later development of progressive retinitis pigmentosa (RP).

- Most frequent cause of combined deafness and blindness in adults and affects 3 to 6% of children born with hearing impairment.

- Mutations can cause truncated Usherin and Usherin with the wrong amino acid inserted- in both cases the Usherin protein does not function and retinal degeneration occurs (and in syndromic Usher 2A, hearing loss from birth or shortly thereafter ensues).
- Optic Cups have been used to validate gene therapy for a FDA authorized clinical trial
- Optic Cups have been used as pre-clinical proof of biological effect for small molecule drugs and biologics
- Since Optic Cups can be made from iPSC from individuals with different gene mutations, they can be used to determine the effectiveness of a potential treatment across multiple iRDs
Leber congenital amaurosis (LCA) is an inherited retinal dystrophy that causes childhood blindness. Photoreceptors are especially sensitive to an intronic mutation in the cilia-related gene CEP290, which causes missplicing and premature termination, but the basis of this sensitivity is unclear. Here, we generated differentiated photoreceptors in three-dimensional optic cups and retinal pigment epithelium (RPE) from iPSCs with this common CEP290 mutation to investigate disease mechanisms and evaluate candidate therapies. iPSCs differentiated normally into RPE and optic cups, despite abnormal CEP290 splicing and cilia defects. The highest levels of aberrant splicing and cilia defects were observed in optic cups, explaining the retinal-specific manifestation of this CEP290 mutation. Treating optic cups with an antisense morpholino effectively blocked aberrant splicing and restored expression of full-length CEP290, restoring normal cilia-based protein trafficking. These results provide a mechanistic understanding of the retina-specific phenotypes in CEP290 LCA patients and potential strategies for therapeutic intervention.
Challenges Specific To Gene And Cell Therapies

Novel technologies/pathways are being developed, and addressing untapped orphan blindness indications

- New approaches such as gene therapy, gene editing, new Mab targets and RNA editing have the potential to create value in monogenic and underserved blindness disorders, such as Leber’s Congenital Amaurosis (LCA)

- Gene therapy development is more complex. Need to understand safety of virus, construct, promotor, target cells

- No approvals of cell or gene therapy yet for any iRD

- Gene editing (CRISPR-Cas9) in vivo / in situ still a ways off – off target changes have to be addressed

- Sub-retinal administration is complex, not well standardized and cannot be left to non-trained ophthalmologists

- Access to GMP manufacturing facilities for vector production and cell productions
Importance Of Validation Of New Clinical Endpoints

Validated Functional (Vision) Endpoints Can De-Risk Retinal Drug Development

Clear, achievable endpoints are a necessary requisite for successful drug development in any area of medicine, and many retinal diseases are well positioned in this regard. FDA has stated that it will consider improvements in functional and/or anatomical endpoints from adequate and well-controlled studies that use well-defined and reliable methods of assessment, to provide substantial evidence that natural history has been altered for patients with a retinal disease.

Objective Anatomic Endpoints Can Offer Alternatives To Functional (Vision) Endpoints

The availability of robust diagnostic/imaging technology allows retinal specialists to clearly determine the outcome of treatment for inherited rare retinal degenerations (e.g. - SD OCT and EZ Area). FDA accepted structural endpoint for registration. The technology also provides essential information for investors to assess the probability of clinical success for new agents based on the correlation between functional (visual acuity) and structural/anatomic (retinal morphology) responses to treatment.
FFB Clinical Research Institute – Four Key Focus

- Investments in new innovative promising pipeline leads and accelerate them into proof of concept studies in humans. Clinical symposiums
- Assistance in patient recruitment for sponsored clinical trials
 - My Retina Tracker
- Assistance-Guidance in drug development in field of IRD
 - Extensive network of consultants ex executive of Big Pharma Ophthalmology
- Validation of new clinical endpoints (Natural history studies (NHS), Clinical Consortium)
Validation of New Clinical Endpoints

Validation of new clinical endpoints – more sensitive and more reproducible – has been identified as a priority for FFB CRI, to help better design clinical trials and to attract development of therapeutics for RDDs

Approach through:

◦ Natural history studies, (ProgSTAR, RUSH2A)
◦ Ongoing clinical trials funded by FFB or FFB CRI
 ◦ (Validation of “EZ area” as a clinical endpoint for retinitis pigmentosa)
Project Description and Objective → “What”

1. ProgSTAR1 evaluates the natural history of Stargardt's Disease (ABCA4) in a retrospective cohort with 251 patients.

2. ProgSTAR2 evaluates the natural history of Stargardt's Disease (ABCA4) in a prospective cohort with 259 patients for 2 years.
 a. SMART is a subset of ProgSTAR2 to evaluate Scotopic Microperimetric Assessment of Rod Function in Stargardt's Disease with 133 patients.

3. ProgSTAR4 evaluates the natural history of Stargardt's Disease in a prospective cohort of patients with the rare PROM1 gene mutation; funding is from the Shulsky Foundation.

Project Rationale → “Why”

- Determine best outcome measures to accelerate evaluation of emerging treatments for Stargardt's Disease.
- Better understand Stargardt's Disease progression for selecting future clinical trial participants.
- Identify potential participants for forthcoming clinical trials.
Mission Statement
To accelerate the development of treatments for inherited retinal diseases (IRDs) through collaborative and transparent clinical research

Consortium launched in collaboration with Jaeb Center for Health Research (DRCNet)

Executive committee includes:
Drs. J. Duncan, D. Birch, R. Ferris, M. Maguire, M. Pennesi, A. Ayala, J. Cheetham, A, Glassman, P. Zilliox

A natural history study on the progression of USH2A is the first clinical study within the Consortium
Project Description and Objective → “What”

- RUSH2A (Rate of Progression of USH2A Related Retinal Degeneration) characterizes the natural history of retinal degeneration associated with biallelic mutations in the USH2A gene over 4 years with 2 mutation cohorts
 - With congenital hearing loss (Usher syndrome type 2A)
 - Without symptomatic congenital hearing loss (Retinitis Pigmentosa (RP))

Project Rationale → “Why”

- Attract investment for treatments of this disease
- Determine best outcome measures to accelerate evaluation of emerging treatments for USH2A
- Better understand USH2A progression for selecting future clinical trial participants
- Identify potential participants for forthcoming clinical trials
Clinical Consortium of 20+ Centers Worldwide

<table>
<thead>
<tr>
<th>Center</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCSF, San Francisco, CA</td>
<td></td>
</tr>
<tr>
<td>VRA, Gainesville, FL</td>
<td></td>
</tr>
<tr>
<td>Emory, Atlanta, GA</td>
<td></td>
</tr>
<tr>
<td>MEEI, Boston, MA</td>
<td></td>
</tr>
<tr>
<td>Michigan, Ann Arbor, MI</td>
<td></td>
</tr>
<tr>
<td>Wilmer, Baltimore, MD</td>
<td></td>
</tr>
<tr>
<td>NEI, Bethesda, MD</td>
<td></td>
</tr>
<tr>
<td>Duke, Raleigh-Durham, NC</td>
<td></td>
</tr>
<tr>
<td>Rutgers, Jersey City, NJ</td>
<td></td>
</tr>
<tr>
<td>Columbia, NY, NY</td>
<td></td>
</tr>
<tr>
<td>Cincinnati, OH</td>
<td></td>
</tr>
<tr>
<td>Casey, Portland, OR</td>
<td></td>
</tr>
<tr>
<td>Scheie, Philadelphia, PA</td>
<td></td>
</tr>
<tr>
<td>RFSW, Dallas, TX</td>
<td></td>
</tr>
<tr>
<td>Baylor, Houston, TX</td>
<td></td>
</tr>
<tr>
<td>Utah, Salt Lake City, UT</td>
<td></td>
</tr>
<tr>
<td>MCW, Milwaukee, WI</td>
<td></td>
</tr>
<tr>
<td>Ghent, Belgium</td>
<td></td>
</tr>
<tr>
<td>Sick Kids, Toronto, Canada</td>
<td></td>
</tr>
<tr>
<td>Moorfields, London, England</td>
<td></td>
</tr>
<tr>
<td>Institut de la Vision, Paris, France</td>
<td></td>
</tr>
<tr>
<td>Tubingen, Germany</td>
<td></td>
</tr>
<tr>
<td>Radboud University, Nijmegen, The Netherlands</td>
<td></td>
</tr>
</tbody>
</table>
Assistance- Guidance in Drug Development in Field of iRD

Assistance to small Biotech in drug development through
- Access to Extensive network of consultants- ex executive of Big Pharma Ophthalmology
- Works shops, Symposium

CLINICAL STATEMENT
Recommendations on Clinical Assessment of Patients with Inherited Retinal Degenerations

Abstract
This AAO Clinical Statement provides recommendations for evaluation and clinical assessment of patients with inherited retinal degenerations (IRDs). Various testing procedures and the timing at which they are recommended are described for patients within 4 broad classes of IRD (rod-cone degenerations, cone-rod degenerations, chorioretinal degenerations and inherited macular dystrophies). Pediatric patients sometimes require modified testing regimens or sedation for accurate assessment. Genetic testing and genetic counseling are important components of the assessment of patients with IRDs as genetic testing may be valuable to confirm the diagnosis, provide accurate information to the patient and family members and potentially to confirm eligibility to participate in clinical trials. The statement also provides information that would be of value to support and educate patients with IRD. These recommendations are intended to provide guidelines for the management of patients with IRDs. As always, final decisions will rest with the preferences of individual physicians and the needs of individual patients.
Updated and expanded online version of the Foundation’s disease registry for people with inherited retinal diseases, available at www.MyRetinaTracker.org

Mission: Enable people with inherited, degenerative orphan retinal diseases, their doctors and researchers to actively collaborate in the research process. This will be accomplished by:

- Patients sharing information about the history, progression and personal impact of their disease
- Patients authorizing their doctors to share their diagnosis, and select current and future clinical information
- Patients participating in research studies when they are identified by researchers as potentially good subjects for their studies and contacted through My Retina Tracker™.

Designed with state-of-the-art database technology to protect participant privacy and ensure ease of use.
SUMMARY

- Anti-sense RNA oligonucleotides are a viable treatment strategy for inherited rare retinal degenerations
- Proof of concept using anti-sense oligos has shown in multiple iRD models
- Optic Cups from individuals with the iRDs are being used to bridge from animal models to human iRD specific conditions
- FFB’s RUSH2A natural history study provides information needed to determine timing of treatment and EZ Area is a FDA accepted endpoint for the retinal degeneration seen in Usher 2A syndromic and non-syndromic retinal degeneration.
- FFB Clinical Consortium could provide validated and qualified clinical centers to conduct a clinical trial.
Thank you

Visit

www.fightblindness.org
QR-313 for Dystrophic Epidermolysis Bullosa

Presenter: Dave Rodman
Dystrophic Epidermolysis Bullosa (DEB)

1. What is DEB and why do we think ProQR can make a difference?
2. What scientific progress have we made?
3. Where do we go from here?
1. What is DEB

High unmet need, inadequate treatment options, good understanding of the underlying genetics and molecular pathogenesis.
DEB pathogenesis

Histology

Stratum corneum
Epidermis
Dermis
Subcutaneous fat

Healthy skin

DEB skin
Skin blistering
Wound healing impaired
Infections
DEB pathogenesis

Histology

- **Stratum corneum**
- **Epidermis**
- **Dermis**
- **Subcutaneous fat**

Healthy skin

DEB skin
- Skin blistering
- Wound healing impaired
- Infections
DEB genetics

COL7A1 encodes for the Collagen type VII (C7) protein

Autosomal Recessive Mutation distribution COL7A1

Exon 73 29%
Exon 74 6%
Exon 75 3%
Exon 87 3%
Exon 110 3%
Exon 80 2%
Exon 3 4%
Other 51%

COL7A1 mutation database/Browne et al, 2011
DEB Molecular Pathogenesis

Normal formation of anchoring fibrils- no mutations in COL7A1

Pre-mRNA

mRNA

Protein

Anchoring fibrils

Interstitial collagen fibers

Exon 72

Exon 73

Exon 74
Mutations in COL7A1 lead to absence of anchoring fibrils.
DEB – How can ProQR oligonucleotide therapies make a difference?
QR-313 for dystrophic epidermolysis bullosa

MOLECULAR TARGETING WITH DISEASE-MODIFICATION DUE TO LONG PROTEIN HALF-LIFE

AIMS TO HEAL WOUNDS, RESTORE SKIN AND IMPROVE QUALITY OF LIFE

TOPICALLY APPLIED
Commonly used hydrogel, containing QR-313 RNA therapy

CONVENIENT APPLICATION AT HOME
Maximum frequency every other day
2. QR-313 Progress to date
Screen for skipping of exon 73 from COL7A1
Antisense-oligonucleotide (AON) lead selection

- Good manufacturability
- In vitro Efficacy
- Low Immunogenicity
- Low toxicity

42 AONs

Lead molecule

QR-313
Functional characterization

Ex vivo
- Human skin equivalent model
- Human lymphocyte T-cell activation assay

In vivo
- Mini-pig dermatome epidermal wound
- Mouse intradermal injection
Human skin equivalents (HSE) are highly similar to human skin
Macroscopic overview HSE

Wounded and treated with QR-313 in hydrogel

QR-313 gel is blue due to the presence of a Cy5 label on QR-313
Exon skip analyses

Example: Dermal samples – 100 and 1000 µg – 48 hours

- **100 µg QR-313**: 2/5 samples demonstrate skip = **40%**
- **1000 µg QR-313**: 6/6 samples demonstrate skip = **100%**

ND= no C7 detected, no analysis possible
Summary RNA data
N=2 different donors; 6 repeats per donor

Data represented as mean of 2 donors
Bio distribution of QR-313 and QR-313-Cy5 after a single intradermal injection

1 Treatment

2 Local Sample
Bio distribution of QR-313 and QR-313-Cy5 after a single intradermal injection

<table>
<thead>
<tr>
<th></th>
<th>4h</th>
<th>2d</th>
<th>7d</th>
<th>21d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Göttingen minipig model of human wounding
Delivery in vivo
QR-313 hydrogel applied to wounds on minipigs

Intact skin

Wounded skin 2d

Wounded skin 7d

newly formed epidermis with scab on top
Local tolerability tested in wounded minipigs

- Histopathological examination revealed no test item related changes in sites that were not subjected to wounding.
- Wounded sites showed normal variations that were consistent with the healing process in all groups irrespective of dose.
Summary of Pre-clinical Program

- QR-313 is effective in exon exclusion in wild type human fibroblasts in vitro
- QR-313 is effective in exon exclusion in full thickness skin models in vitro
 - Diffusion of QR-313 in “blister like” dermis
 - Exon skipping demonstrated
- Collagen type VII missing exon 73 can form anchoring fibrils (literature)
- QR-313 is delivered to (epi)dermis in vivo
- Formulation in hydrogel is feasible and stable
- Off-target immunogenicity was not observed
3. Clinical development strategy

- Add-on to standard of care
- Topical with low additional treatment burden
- Rapid symptomatic improvement
- Disease modifying potential
Beachhead and Expansion disease strategy starting with Exon 73 program

- Exon 73: FIH/PoC → Ph2/Pivotal → Expanded Access Long term follow-up → NDA → Launch
- Exon X1: FIH/PoC → Ph2/Pivotal
- EXON X2, X3: Adaptive precision pivotal

Circular chart showing distribution of exons with Exon 73 being 29%, Exon 74 6%, Exon 75 3%, Exon 87 3%, Exon 110 3%, Exon 80 2%, Exon 3 4%, and Other 51%.
High level objectives of the QR-313 Program

• Enter the clinic as quickly as possible.

• Test the hypothesis that oligonucleotide-based exon skipping leads to rapid and meaningful clinical benefit to patients.

• The initial clinical trial will focus on accelerating wound healing and reducing morbidity.

• Extended treatment will focus on establishing disease modifying potential through production of stable, functional collagen type VII at the dermal/epidermal junction in areas of skin at risk for blister recurrence.
Progress to the Clinic

- Pre-clinical PoC
- Off-target oligonucleotide class effects screening
- Delivery mode validated
- Minipig dermal Single/Multiple dose tolerance study
- Pre-toxicology regulatory discussions
- GMP manufacturing
 - Formulation
 - Non-clinical safety studies
 - IND/CTA filing
 - Phase 1/PoC trial start
Thank you!

Patients and families who have been so supportive of our efforts.

Care Givers who have encouraged us to pursue this very rare indication.

Regulators who are willing to help us address the challenges of ultra-rare disease drug development.
EMERGING THERAPIES FOR EPIDERMOLYSIS BULLOSA

PETER MARINKOVICH,
STANFORD UNIVERSITY
Spectrum of recessive dystrophic EB (RDEB)

Severe RDEB with congenital loss of skin

Mild RDEB with mila
Severe generalized recessive dystrophic epidermolysis bullosa

Widespread erosions and scarring
Mitten hand scarring of hands
Complications of RDEB

Tracheal or esophageal strictures

Squamous cell carcinoma
Treatment of EB

- Wound care - nonstick dressings - generous ointments - no tape!
- Infection - look for and treat!
- Nutrition - optimize!
- Anemia
- Squamous cell Ca
Pathophysiology of EB

- Keratin 5/14
- Intermediate filaments
- Laminin-332
- Anchoring filaments
- Collagen VII
- Anchoring fibrils

Types of EB:
- EB Simplex
- Junctional EB
- Dystrophic EB
Type VII collagen and anchoring fibrils

The Ultrastructure of Basal Laminae
(from Basic Histology, 10th edition)
type VII collagen: anchoring fibril assembly
Road to molecular therapy for epidermolysis bullosa

- EB discovered
- 1875
- EB clinical subtypes identified
- 1900
- EM of EB developed
- 1925
- EB defects discovered
- 1950
- basement membrane characterized
- 1975
- gene therapy preclinical validation
- 2000
- clinical trials for EB
- now
- future
- refinement and improvement of molecular therapies
- expansion to other genodermatoses
Overview of emerging therapies for epidermolysis bullosa

In clinical trials
Anti-inflammatory therapies: topical allantoin, topical diacerin

Allogeneic cell therapies: allogeneic fibroblast injections, mesenchymal stem cell infusions, bone marrow transplantation

Autologous gene therapies: collagen VII engineered keratinocyte sheet grafts, and collagen VII engineered fibroblast cell injections

Emerging/preclinical
Collagen VII protein therapy, induced pluripotent stem cell therapy, losartan antifibrotic therapy, extension of spontaneously reverted EB skin
Anti-inflammatory: Topical Allantoin (Zorblisa) Amicus therapeutics

- Completed phase 2b multi-center, double-blind trial in 48 patients with multiple EB subtypes

- End points: target wound healing at 1 month, time to wound closure, change in total body surface area lesional skin, change in itching, and the safety

- Phase 3 (ESSENCE) trial currently in progress study of EBS, JEB, DEB

A. Paller, AAD presentation March 2016

Summary: improvement is modest and does not address disease defect
Diacerin: 1% cream for epidermolysis bullosa simplex

- Diacerin: an approved systemic treatment for osteoarthritis

- 5 EBS patients treated in axillary regions diacern vs control vehicle

- Reduced blister count over two month time point

- Anti-IL-1 effect reduces inflammation in EBS

- May have some activity on keratin expression

Wally et al Orphanet J Rare Diseases 2013

Summary: improvement is modest and does not address disease defect
Bone Marrow Transplantation in recessive dystrophic epidermolysis bullosa

- Seven RDEB patients treated showed varying levels of clinical improvement
- Increased collagen VII expression by bone marrow derived mesenchymal cells
- Electron microscopy showed modest changes in anchoring fibrils
- Disadvantages: long term data still pending
- Disadvantages: 30% mortality is greater than mortality of RDEB at ages used

Summary: 30% mortality, long term results not known

Wagner et al NEJM 2010
Revertant mosaicism in epidermolysis bullosa – potential to extend naturally occurring gene corrections

- Observations of focal areas of spontaneous mutation reversion in junctional and dystrophic EB patients

- Common in BP180 deficient JEB (30%), rare in RDEB patients

- Potential to graft corrected areas of skin to non-corrected areas, extending the clinical benefit

Kiritsi et al JID 2014

Summary: no reduction to practice yet, very small subset EB patients
Losartan: a potential new anti-fibrotic therapy for dystrophic epidermolysis bullosa

- angiotensin II type I receptor antagonist in clinical use as anti-hypertensive

- inhibited fibrosis and pseudosyndactyly in mouse model of dystrophic EB

- Inhibitor of TGF-β expression

- Clinical trials of losartan in dystrophic EB patients in Europe

Nystrom et al 2015, EMBO Mol Med

Summary: can reverse fibrosis but not the blistering defect
Collagen VII protein therapy for recessive dystrophic epidermolysis bullosa

- Preclinical: intradermal (shown to the right), intravenous, topical collagen VII all shown to be effective

- Shire pharmaceuticals in development of intravenous collagen VII therapy for RDEB, however clinical hold has been put in place for safety issues

- Intra-dermal/intralesional likely to be first route of collagen VII administration in clinical trial of RDEB patients within the next year.

Summary: Expensive and safety issues with IV therapy

Woodley et al Nat Med 2004
Allogeneic fibroblasts/mesenchymal stem cells for epidermolysis bullosa

Advantages: safe, stimulates short term healing, already in clinical use
Disadvantages: no long term benefit

Summary: modest results of short duration

Intradermal allogenic fibroblast intradermal injections
Petrof et al 2015 JID; Petrof et al 2013 BJD

Mesenchymal stem cell IV infusions
Phase I/II trial of C7 Fibroblast Gene therapy for RDEB at Stanford University

- Phase I/II clinical trial of C7 overexpressing autologous fibroblast therapy for RDEB

- Intradermal wound injections of patient derived C7 overexpressing autologous fibroblasts

- Endpoints: Safety, clinical efficacy, molecular correction

- First patient treated last month, 6 patients total planned for 2017 (Fibrocell, sponsor)
Results of a phase I trial of epidermal based gene therapy for recessive dystrophic epidermolysis bullosa

- Four RDEB patients treated with C7 engineered autologous keratinocyte grafts six sites per graft, 24 grafts total

- End points: Safety, wound healing efficacy, molecular correction evaluated up to one year
RDEB patient 1 wound correction at 6 months: IEM

LH24 (collagen VII NC2) immuno-localization

Siprashvili et al, JAMA 2016
Overview of C7 Gene Therapy autograft production

Summary: clinically effective but very expensive and highly specialized
Safety analysis of grafted patients

Summary: immune reactions may be an important future challenge

<table>
<thead>
<tr>
<th>Subject #</th>
<th>Visit</th>
<th>Autoimmune blistering</th>
<th>Circulating auto-antibodies</th>
<th>RCR</th>
<th>Cytotoxic T cells</th>
<th>Graft infection</th>
<th>SCC</th>
<th>Direct auto-antibodies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 mo</td>
<td>-</td>
<td>-</td>
<td>ND</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Site D:</td>
</tr>
<tr>
<td></td>
<td>3 mo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Site Z:</td>
</tr>
<tr>
<td></td>
<td>6 mo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Site E:</td>
</tr>
<tr>
<td>2</td>
<td>1 mo</td>
<td>-</td>
<td>-</td>
<td>ND</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Site D:</td>
</tr>
<tr>
<td></td>
<td>3 mo</td>
<td>-</td>
<td>1:20 IgG</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Site A: 1+ IgG, 1+ IgM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Site B:</td>
<td>Site E: 2+ IgG, trace IgM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 mo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Site C:</td>
</tr>
<tr>
<td>3</td>
<td>1 mo</td>
<td>-</td>
<td>-</td>
<td>ND</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>3 mo</td>
<td>-</td>
<td>1:320 IgA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Site A:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Site C:</td>
<td>Site B: trace IgM, Site D: 1+ IgM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 mo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Site A: trace IgA, trace to 1+ IgM</td>
</tr>
<tr>
<td>4</td>
<td>1 mo</td>
<td>-</td>
<td>1:160 IgG</td>
<td>ND</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Site A: 1-2+ IgG, 1+ IgA, trace IgM, 1+ focal C3</td>
</tr>
<tr>
<td></td>
<td>3 mo</td>
<td>-</td>
<td>1:160 IgG</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Site E: 1-2+ IgG, 1-2+ IgA, 1+ IgM, 1+ focal C3</td>
</tr>
<tr>
<td></td>
<td>6 mo</td>
<td>-</td>
<td>1:40 IgG 1:40 C3</td>
<td>Await</td>
<td>ND</td>
<td>-</td>
<td>-</td>
<td>Await</td>
</tr>
</tbody>
</table>
Advantages of ProQR approach

• Corrects underlying defect, unlike diacerin, allantoin or losartan which only address secondary complications

• Topical localized therapy – no need for specialized centers unlike engineered cell therapies

• No insertional oncogenesis, unlike viral based therapies

• Favorable risk/safety profile, unlike bone marrow replacement therapy
Acknowledgements and funding

Stanford EB Team
Jean Tang
Al Lane
Paul Khavari
Doug Keene
Phong Khuu
Zurab Siprashvili
Ngon Nguyen
Emily Gorel
Kylie Loutit
Kerri Rieger
Peter Lorenz
Louise Furakawa
Peter Marinkovich
New Discoveries in Role of RNA Pave Way for Innovative Treatments

RNA-targeted therapeutics: Past, Present and Future

Arthur A. Levin, Ph.D.
Scientific Advisor & EVP Research and Development, Avidity Biosciences, La Jolla, CA
Art.Levin@gmail.com
Central Dogma of Molecular Biology
RNA-based Drug Discovery & Development
Watson and Crick base-pairing rules have been the foundation used to develop RNA therapeutics.

Use genomic information to rationally design drugs that selectively inhibit disease-related RNAs.

In classic pharmacology terms:

- Receptor => Disease related RNA
- Drug => Oligonucleotide
- Binding motif => Watson Crick Binding
- Post binding event => Degradation of mRNA or mods to RNA activity
Evolution of Central Dogma - RNA Role in Nature/Biology More Critical and Complex

- Evolution of Central Dogma: Nature uses RNA as a means of **regulating biology** in multiple ways

- RNA is not just a recipe for proteins; it has regulatory functions

- Wealth of regulatory processes and mechanism by which RNAs regulate biology provides a rich source of novel targets and mechanisms to modulate disease related protein expression
RNA Role in Regulating Biology Provides New Treatment Opportunities

DNA → RNA → Protein
- One gene to one RNA to one Protein

DNA → multiple splice variants → multiple proteins
- One gene, multiple RNAs to multiple proteins with protein expression (transcription factors etc) controlling the entire process

DNA → mRNA, microRNA, non-coding RNAs → proteins
- One gene multiple RNAs to multiple protein with proteins, microRNAs, and other RNA-RNA interactions controlling gene expression
Junk DNA No More: Large Portion of the Genome is Non-Coding RNAs

From: Barbara Hrdlickova et al
A New Understanding of RNA Provides Opportunity for Drug Discovery & Development

- Watson and Crick base-pairing rules and evolution of understanding RNA provide ability to create therapeutic agents to target regulatory RNAs and modulate their function.

- Nature uses RNA as a weapon in viruses and in viral defense strategies.

- Exploit our understanding of these processes to harness some of the regulatory power of RNAs to modulate the expression of disease-related proteins.

- Oligonucleotide therapeutics are poised to exploit new knowledge of RNA’s many important roles for therapeutic purposes.
Range of RNA Mechanisms Key in Drug Discovery & Development

- RNA Mechanisms now in practice:
 - Steric blocking of start sites
 - RNAse H
 - RISC
 - Exon Skipping
 - Splice switching
 - Sequestration of splicing factors
 - mRNA correction
 - microRNA inhibitors and sponges
 - microRNA mimetics
 - Decoys
 - Synthetic mRNA
 - RNA Editing/ADAR
New Understanding RNA Mechanisms in Biology
Critical in Developing New Drugs

Mechanism of Action of Miravirsen.

Utilizing the Role of Human microRNA-122 to Target Hepatitis C Infection
RNA Editing: Altering properties of mRNAs to achieve novel biology

- mRNA can be altered before it’s used to make proteins
- Some of the changes are big—large sections are cut out, and the remaining pieces are glued back together
- Other changes are small—sometimes, a single “A” gets converted into an “I” (functionally equivalent to a “G”)
- Performed by group of enzymes called ADARs, which recognize specific sequences of RNA and makes those A-to-I changes
Benefits of RNA Editing vs. CRISPR DNA Editing

RNA Editing Benefits
- Reversible (Ethics & Safety)
- Endogenous machinery (Deliverability & regulatory)
- Non-viral delivery
- No protein expression required
- No strand breaking required
- Process used in eukaryotes

CRISPR DNA Editing Challenges
- Designed to promote integration of the molecule into the genome
- Target changes are permanent in the genome of somatic cells and possibly germ cells
- Off-target changes should they occur are permanent in the genome of somatic cells and possibly germ cells
- Delivery of guide RNAs
- Delivery of Cas9 protein or mRNAs encoding it
- Ramifications of DNA editing and off-target effects
Enzymatic “A” to “I” Conversions - Messenger RNA Massage

Change the nature of proteins without altering the underlying DNA instructions.

RNA editing is common in the neurons of cephalopods (100K ADAR sites)

Editing may explain the plasticity of in brain octopus and some squid

A to I recoding is extremely rare in mammals but the machinery is there. Only about 25 human genes are edited this way

From: Liscovitch-Brauer
Cell 2017
Key Challenges in RNA-based Drug Development

- Delivery
- Delivery
- Delivery
Receptor-Mediated Uptake Hepatocytes for Delivery to Liver is Widely Used

From: Levin AA, NEJM 2017
Clinical Responses Demonstrate the Benefit of Targeted Delivery to Hepatocytes

From: Viney et al Lancet 2016c

Figure 4: Comparison of dose-response curves of IONIS-APO(a)$_{L_{po}}$ and IONIS-APO(a)$_{L_{ox}}$ after 4 weeks of subcutaneous administration

Error bars are SEM. The upper left side of the curve was extrapolated based on the curve fit of the data due to the fact that lower doses were not tested.
Utilizing Other Cell Surface Receptors to Deliver Oligonucleotide Payloads

From: Levin AA, NEJM 2017
mAb-siRNA Conjugates Produce Reductions in Target Gene Expression in Muscle in Mice

- Single injection of 3 mg/kg dose produced >90% knockdown of target gene at 96 hrs
Exploiting Other Cell Surface Receptors to Deliver Oligonucleotide Payloads: Long Lived Activity

mRNA KD in Skeletal Muscle After Single Dose of 3 mg/kg

% Target mRNA Expression

Time (days)

Active mAb - Active siRNA
Active mAb - Scrambled siRNA
PBS Control
Timeline of Key RNA-based Drug (Antisense Oligonucleotide) Development

- 1998 CMV ASO Approved
- 1998 Discovery of RNAi
- 1999 First clinical trials HPV
- 1994 First Trials CMV
- 1995 Systemic ASO Trials HIV and ICAM
- 2003 ASO Liver iRNA Trials
- 2005 DMD SSO Trials
- 2006 Systemic siRNA trials RSV & HCC
- 2011 First Systemic ASO Approved
- 2014 GalNAc anti-miRNA in Trials
- 2016 SMA SSOligo Approved
- 2016 DMD SSOligo Approved
Innovation: ProQR Uniquely Positioned to Develop RNA-based Treatments

- ProQR utilizing local delivery
 - QR-010 for CF
 - QR-110 for LCA
 - QR-313 for EB
 - QRX-421 and QRX-411 for Ushers
- Axiomer (A to I Editing) a nu wave

- ProQR embraces the totality of RNA biology and is exploiting multiple mechanism of action and multiple regulatory processes
Why Be Optimistic about RNA-Based Therapeutics

- The most direct application of genomic revolution for design of medicines
- Nature uses RNA for modulation of gene expression, anti-viral activity and creating plasticity in responses
- Ample evidence for activity of RNA treatment modalities in animal models and man
- Path for development is now established with PK/Tox/CMC issues understood
- RNA-targeting drugs have growing importance as we come to greater understand the RNA world
- RNA-targeting drugs are poised to exploit this understanding
Thank you
Innovation

ProQR’s pipeline filler

Presenter: Gerard Platenburg
Innovation platform
Targeting genetic disorders at the RNA
RNA space

- **1970** - Breakthrough in antisense
- **1980** - Antisense & knockdown
- **1990**
- **2000** - First therapeutics emerge
- **2010** - RNA editing
- **Restoring functionality**
Innovation at the core

- Targeting severe genetic diseases
- RNA modulation to correct genetic mutations
- Local delivery
- Diversified pipeline
- Efficient discovery engine to development

- > 8000 genetic diseases known
- Majority single gene diseases
- Causality mostly known
- Limited treatment options
- Viable commercial strategy
- Restoring protein function is key
Innovation at the core

- Targeting severe genetic diseases
- RNA modulation to correct genetic mutations
- Local delivery
- Diversified pipeline
- Efficient discovery engine to development

- Altering protein function
- Restoring protein function
- Knock-down protein function
- Knock-down protein expression
- Protein modulation:
 - Homeodomain removal
 - Restoring mutation
- Modulating mRNA translation into a protein
Innovation at the core

Targeting severe genetic diseases

RNA modulation to correct genetic mutations

Local delivery

Diversified pipeline

Efficient discovery engine to development
Innovation at the core

Targeting severe genetic diseases

RNA modulation to correct genetic mutations

Local delivery

Diversified pipeline

Efficient discovery engine to development

Respiratory

Dermatology

Ophthalmology

CNS
Innovation at the core

- Targeting severe genetic diseases
- RNA modulation to correct genetic mutations
- Local delivery
- Diversified pipeline
- Efficient discovery engine to development
Innovation at the core

Targeting severe genetic diseases

RNA modulation to correct genetic mutations

Local delivery

Diversified pipeline

Efficient discovery engine to development

- Dermatology: QR-313 2015
- CNS: QR-704 HD 2015, QR-203 HCWA 2016
- Cystic Fibrosis: QR-010 Clinical PoC in biomarker study in 2016
- Axiomer®: RNA platform 2016
Axiomer® technology

Editing OligoNucleotides (EONs)
A new class of medicines
Axiomer® - “RNA editing”

<table>
<thead>
<tr>
<th>Protein</th>
<th>RNA</th>
<th>DNA</th>
<th>ADAR - RNA editing</th>
<th>CRISPR - DNA editing</th>
</tr>
</thead>
</table>

Reversible (Ethics & Safety)	√
Endogenous machinery (Deliverability & regulatory)	√
Non-viral delivery	√
No protein expression required	√
No strand breaking required	√
Applicability	A>I (G)

ProQR Therapeutics - R&D Day 2017
Axiomer® Editing Oligonucleotides (EONs)

Oligonucleotide mediated targeted RNA editing

- Unique RNA editing technology
- Applicable to >20,000 disease-causing mutations
- Similar capabilities as CRISPR, without the key risks
- Brings clinical applicability of “editing” in reach
- IP fully owned ProQR far ahead of competition
- In-vitro PoC established in multiple disease models
ADARs deaminate adenosine in dsRNA

Adenosine Deaminase Acting on RNA

- Inosine is synonymous with Guanosine
- ADARs are expressed in the cells of most eukaryotes
- A to I editing is very common: > 10^6 targets in the human transcriptome
- RNA editing alters gene expression and recodes proteins
ADARs natural substrate features

ADAR naturally binds and edits adenosines in dsRNA structures
• Imperfect stems
• Bulges or loops

Natural ADAR editing can be specific or promiscuous
• Structural features of the substrate are important
• Nucleotides neighboring the target Adenosine provide context

Sequence as such not important
EONs recruit resident ADAR to target

<table>
<thead>
<tr>
<th></th>
<th>DNA</th>
<th>RNA</th>
<th>Protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mutant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Editing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correction</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Can we recruit ADAR to edit therapeutic targets

Key Questions

- Can we recruit ADAR to edit any target transcript? ✓
- Can we make it specific for the target adenosine? ✓
- Is there sufficient ADAR in the cell? ✓
- Can we create a single component EON based therapy? ✓
- Can we postulate generic EON design rules? ✓
- Can we overcome editing context preference? ✓
- Are ADARs present in therapeutically relevant mouse and human tissues? ✓
Rationale of Axiomer® EON design

- Target finding by Watson-Crick base pairing
- Mimic dsRNA structures of natural substrates (e.g. GRIA2)
- Recruiting ADARs to bind the mimicked structures
- Allowing or promoting flipping of the target adenosine
- Promoting editing of the target adenosine
- Preventing editing of non-target adenosines
- Chemical modifications compatible with editing
- Drug-like properties
ADAR recruited by EON
Adenosine deaminases acting on RNA
ADAR recruited by EON
Adenosine deaminases acting on RNA
ADAR recruited by EON
Adenosine deaminases acting on RNA
ADAR recruited by EON

Adenosine deaminases acting on RNA
ADAR recruited by EON
Adenosine deaminases acting on RNA

Widely applicable to:
- (Premature) stopcodon / UTR's
- (Cryptic) splice sites
- Intronic and Exonic mutations
- Amino acid substitutions (K, R, H, D, E, Q, N, Y, S, T, I, M)
- miRNA modulation
EONs can restore ORFs
In vitro Proof of Concept in GFP cell model

GFP model

- Target RNA with stop mutation
- EON guide strand to recruit ADAR
- Efficacy by Sanger sequencing

EON treatment results in 50% A>I editing
I is translated as a G
EONs can restore ORFs

In vitro Proof of Concept in GFP cell model

GFP model
- Target RNA with stop mutation
- EON guide strand to recruit ADAR
- Efficacy by Sanger sequencing

EON treatment results in 50% A>I editing
I is translated as a G
EONs can restore ORF in Hurler model

Hurler model
- Mucopolysaccharidosis type I
- Iduronidase deficiency
- Target RNA with stop mutation
- EON guide strand to recruit ADAR
- Efficacy by Sanger sequencing

Mutated Idua mRNA

Mutated Idua mRNA+EON

EON treatment results in ~25% A>I editing
EONs can restore ORF in Hurler model

Hurler model
- Mucopolysaccharidosis type I
- Iduronidase deficiency
- Target RNA with stop mutation
- EON guide strand to recruit ADAR
- Efficacy by Sanger sequencing

EON treatment results in functional Idua
Axiomer® EON targeted RNA editing

<table>
<thead>
<tr>
<th>Gene</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDUA</td>
<td>Hurler syndrome</td>
</tr>
<tr>
<td>Serpina1</td>
<td>(\alpha)-antitrypsin deficiency</td>
</tr>
<tr>
<td>PINK1</td>
<td>Parkinson’s disease</td>
</tr>
<tr>
<td>FV Leiden</td>
<td>Factor V Leiden deficiency</td>
</tr>
<tr>
<td>CFTR</td>
<td>Cystic fibrosis</td>
</tr>
<tr>
<td>GFP, b-actin, Snrpa,</td>
<td>Models</td>
</tr>
<tr>
<td>GAPDH, GPI, GUSP, RAB7A, VCP</td>
<td></td>
</tr>
</tbody>
</table>
Axiomer® Editing Oligonucleotides (EONs)
Oligonucleotide mediated targeted RNA editing

Unique RNA editing technology

Applicable to >20,000 disease-causing mutations

Similar capabilities as CRISPR, without the key risks

Brings clinical applicability of “editing” in reach

IP fully owned ProQR far ahead of competition

In-vitro PoC established in multiple disease models
Axiomer® next steps and strategy

Next steps
• Complete optimization of PoC in vitro and in vivo in 2017

Strategy
• >20,000 disease causing mutations are G>A mutations
• Axiomer® platform technology can yield large number of new medicines for currently untreatable diseases
• ProQR will pursue an active business development strategy to develop the platform to its full potential and generate non-dilutive funding
IT'S IN OUR RNA