

EXPLORING THE THERAPEUTIC POTENTIAL OF RNA NEW EDITING TECHNOLOGIES LEVERAGING ADAR ENDOGENOUS MACHINERY

Monica Aguila, Science lead at ProQR DATS - June 1, 2023

What is ADAR editing?

ADAR (Adenosine Deaminase Acting on RNA)

Enzyme that performs specific form of natural RNA editing, called **A-to-I editing.** During A-to-I editing an **A nucleotide (adenosine)** is changed into an **I nucleotide (inosine)**

Natural ADAR editing (A-to-I)

Axiomer[®] EONs unlock cellular machinery potential to treat diseases

By attracting ADARs and allowing highly specific editing

Driving the development of optimized EONs for therapeutic use

ADAR-binding region (ABR)

Backbone modifications enable ADAR binding, and disable off-target editing

Optimized sequence and chemistry define functionality

Ensure bioavailability (cell and tissue uptake)

ADAR: Adenosine deaminase acting on RNA, EON: Editing oligonucleotide, Nt: nucleotides

ProQR leading research to optimize EONs for therapeutic use

Modification of the orphan base

in the EER confirm superiority of dZ base

Structure-activity relationship (SAR) assessment

interrogating the impact of single change to define guiding principles

Modification in the Editing Enabling Region (EER)

Cytidine analogs as orphan base

A single base modification of the EER increases ADAR activity

dZ base mimics E488Q mutation in ADAR2 causing hyperactivity

dZ base (dZ)

Metthews 2016, Nature Structural & Molecular Biology

Doherty et al., 2021, JACS, ProQR – UC Davis collaboration

dZ in the EER improves editing of SERPINA1 E366K in A1AD patient hepatocytes

Improved editing obtained for several systems

dZ improves editing in different cell types

COLLABORATION

Modification in the ADAR-binding region (ABR)

Examples of structure–activity relationship (SAR) assessment interrogating the impact of neutral linkage modifications

Different linkage modifications commonly encountered in oligo therapeutics

Neutral linkages Decreased nuclease degradation, Remove all PS

Effect of phosphoroamidate linkage on EONs editing activity in different models

To enhance metabolic stability and activity

Introduction of PN to EON showing the critical impact on editing efficiency

RNA editing of WT APP in human ARPE-19

Transfection, N=2, 2 days, 100nM, ddPCR, Mean, SD

EON	Structure
APP dC – No PN, dC base	A _X U _X C _W A _X C _X U _X G _X U _X C _X G _Z C _X dCA _X U _Y G _X A _X C _Z A _X A _X C _W A _X C _X C _X G _X C
APP dZ – No PN, dZ base	$A_{X}U_{X}C_{W}A_{X}C_{X}U_{X}G_{X}G_{X}G_{X}G_{X}U_{Y}G_{X}A_{X}C_{Z}A_{X}A_{X}C_{W}A_{X}C_{X}G_{X}}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}G_{X}}$
APP 1-24 – dZ and PN at different positions	A _N U _X C _W A _X C _X U _X G _X U _X C _X G _Z C _X dZ A _X U _Y G _X A _X C _Z A _X A _X C _W A _X C _X C _X G _X C

- The sequences contain a mix of 2'-O-Me, DNA, PMe, PS, 2'-F, 2'-MOE
- The changing factor is +/- dZ in EER and +/- PN (N) with systematic change in location
- Each letter coding shows a combination of linkage and sugar modifications
- PN increases EON editing up to 1.5x and, in some positions, have negative effect on editing

Effect of PN linkages on EONs editing activity in different models

- The sequences contain a mix of 2'-O-Me, DNA, PMe, PS, 2'-F, 2'-MOE
- The changing factor is +/- 2 PNs at the same locations

Accelerating program advancement with focus on design principles

EON

	Aspect	Determined by	Modifications	Effects
\bigcirc	Base	Target RNA	Mismatches and analogs (dZ)	Improved PD
r.	Ribose modification	ADAR structure	2'-H, 2'- <i>O</i> -Me, 2'-MOE, 2'-F, 2'-NH ₂ , LNA, TNA, UNA, 2',2'-diF, FANA	Improved PK and PD
	Linkage	ADAR structure	PO; PS; PN ; PMe; PAc	Improved PK and PD

ADAR: Adenosine deaminase acting on RNA, EON: Editing oligonucleotide, PD: pharmacodynamic, PK: pharmacokinetic

Advancing Axiomer[®] development across different models and targets in the liver

Liver Targeting liver originated diseases

Cell models

Mice in vivo

Up to 70% RNA editing in human primary hepatocytes

A1AD: Alpha-1 antitrypsin deficiency.

Editing in InSphero Human Liver microtissues (LMTs)

Primary hepatocytes, Kupffer cells and liver endothelial cells in 3D spheroid

BSEP Bile Canaliculi

(InSphero data)

Live imaging of LMT

Stained with 5-CFDA (green), PI (red) and Hoechst (blue)

Presence of bile channels in LMTs by day 7 fluorescent dye 5-CFDA secreted from healthy cells into bile channels

(canaliculi)

Editing of ACTB in human LMTs

Gymnosis, 1µM, constant dose, 3 pools of 24 LMTs per condition, 14 days, dPCR, mean, SD

Treatment of LMTs with 1 μ M EON for 14 days results in up to 40% RNA editing of ACTB

BSEP: Bile salt export pump, LMTs: Liver Microtissues constituted of primary hepatocytes, Kupffer cells and liver endothelial cells in 3D spheroid.

Up to 50% RNA editing of *ActB* in liver of mice

High *in vivo RNA* editing of *ActB* in the liver of mice reaching up to 50%

Axiomer[®] creating a new class of medicines with broad therapeutic potential

Correction **Protein modulation** Alter protein function or **Disrupt >400 different types Change protein Mutations correction** interactions include protective variants of PTMs Thousands of G-to-A Modified proteins achieving Regulate protein activity, Changes localization, folding, mutations, many of them described in literature loss- or gain-of-functions that protein function or prevents change localization, folding, help addressing or preventing immune escape immune escape of preventing diseases or slowing down degradation glycosylated tumor antigens **BROAD THERAPEUTIC POTENTIAL**

Target a wide variety of organs

Treat so-far undruggable targets

PTMs: Post-translational modifications.

Changing the autocleavage site with Axiomer[®] leads to a LOF in PCSK9

Generation of a loss-of-function variant to lower PCSK9

Disruption of PCSK9 autocleavage site reduces protein in bloodstream

- Less PCSK9 leads to increase of LDL-R on cells, decrease of 'bad' LDL in bloodstream
- Loss-of-function *PCSK9* variant Q152H is associated with low plasma LDL cholesterol in a French-Canadian family and with impaired processing and secretion in cell culture

LDL: Low density lipoprotein, LDL-R: Low density lipoprotein receptor. LOF: Loss of function. Reference: Mayne J, et al. Clin Chem. 2011 Oct;57(10):1415-23.

Editing of *PCSK9* RNA results in a proenzyme with dominant negative properties

RNA editing of *PCSK9* in HeLa cells

Transfection, 100nM, single dose, N=2, 48 hours, ddPCR

• Up to 25% A-to-I editing of *PCSK9* RNA detected using ddPCR assays leading up to 80% reduction of total PCSK9 protein

PCSK9 protein expression in HeLa cells

Transfection, 100nM, single dose, N=2, 48 hours, western blot

- Shift in the ratio cleaved to uncleaved PCSK9 observed; 70%:30% in mock to 25%:75% in treated samples
- The inability to undergo autocleavage likely retains the proenzyme in the endoplasmic reticulum where it can act as a dominant negative protein, preventing the exit of the wild-type form of PCSK9.

ProQR leading research to optimize EONs for therapeutic use

Modification of the orphan base

in the EER confirm superiority of dZ base

Structure-activity relationship (SAR) assessment

to define guiding principles

Positive impact of neutral linkage modifications in the ABR (PN)

New optimizations combined for pipeline development

targeting liver originated disorders

ProQR® IT'S IN OUR RNA