

HARNESSING CHEMICAL MODIFICATIONS

to improve ADAR potency and unlock Axiomer's broad applicability Lenka van Sint Fiet, PhD, *Sr. Director Technology* RNA Editing Summit – July 12, 2023

RNA toolbox – editing platform technologies

Axiomer[®] and Trident[®] in development by ProQR

Axiomer[®] A-to-I editing

- Exploiting endogenous ADAR
- Recruited by synthetic Editing Oligonucleotide (EON)
- I is translated as a G, allowing to target G-to-A mutations
- Specific, potent, and stable by design
- Thousands of G-to-A mutations described in literature

Trident[®] U-to-Ψ editing

- Exploiting endogenous pseudouridylation machinery
- psEON adopts a hairpin structure with a guiding sequence ultimately recruiting the machinery
- Specifically target PTC mutations (~11% of all known disease-causing mutations)
- Broad applicability to various diseases caused by PTCs

Axiomer[®] EONs unlock cellular machinery potential to treat diseases

By attracting ADARs and allowing highly specific editing

Driving the development of optimized EONs for therapeutic use

ADAR-binding region (ABR)

Backbone modifications enable ADAR binding, and disable off-target editing

Optimized sequence and chemistry define functionality

ADAR: Adenosine deaminase acting on RNA, EON: Editing oligonucleotide, Nt: nucleotides

dZ in the EER improves editing of SERPINA1 E366K in A1AD patient hepatocytes

Improved editing obtained for several targets

dZ modification on EER improves editing in different cell types

A single base change opposite the target 5'G greatly enhances editing

In vitro deamination kinetics for ADAR2 and duplex RNAs derived from WT hMECP2 100 nM ADAR2, 3 technical replicates, mean, SD

In vitro deamination kinetics for ADAR2 and duplex RNAs derived from hMECP2 R255X

100nM ADAR2, 3 technical replicates, mean, SD

3-deaza-dA in EER

Adapted from Doherty EE, et al. Nucleic Acids Res. 2022;50(19):10857-10868.

Statistical significance between groups was determined using one-way ANOVA with Tukey's multiple comparisons test or an unpaired t-test with Welch's correction; **P < 0.001; ***P < 0.001; ***P < 0.001.

ADAR-binding region (ABR) modification greatly enhances editing

ADAR-binding region (ABR) Backbone modifications enable ADAR binding, and **improve** stability

PN and PMe linkages greatly increase EON editing efficiency in positions within ABR region

Accelerating program advancement with focus on design principles

EON

	Aspect	Determined by	Modifications	Effects
\bigcirc	Base	Target RNA	Mismatches and analogs	Improved PD
х.	Ribose modification	ADAR structure	2'-H; 2'-OMe; 2'-MOE; 2'-F; 2'-NH2, LNA, TNA, diF, 2'-FANA	Improved PK and PD
	Linkage	ADAR structure	PO; PS; PN; MeP; UNA; PAc	Improved PK and PD

This work led to a portfolio of 10 published patent families

ADAR: Adenosine deaminase acting on RNA, EON: Editing oligonucleotide, PD: pharmacodynamic, PK: pharmacokinetic

Axiomer[®] RNA editing platform has broad potential

Increased editing efficiency

EER and ABR modifications greatly enhance editing

Consistent RNA editing

in all models evaluated in nervous system and liver, including NHP in vivo

Validation of Axiomer's potential for therapeutic targets

With positive effect on protein expression

Broad applicability

With proof of concept in mutation correction and multiple forms of protein modulation

Establishing a strong platform in multiple organs, targets and models

CNS: Central nervous system, NHP: Non-human primate, PNS: peripheral nervous system

More than 50% RNA editing achieved in human iPSC derived neurons

Up to 65% RNA editing achieved in iPSC derived cerebral organoids

RNA editing leads to protein function Lilly recovery in brain tissues of interest in vivo

RNA editing in mice brain*

ICV, 250µg, single dose, n=6, 4 weeks, western blot, mean, SEM

Protein function in mice brain*

Cerebellum

EON

Midbrain

Hippocampus

Control

Cortex

Up to 40% editing *in vivo* leading to 26-fold change in protein function recovery at 4 weeks with a single dose

Up to 30% RNA editing reported in brain and approx. 50% in spinal cord in NHP *in vivo*

RNA editing *in vivo* in NHP brain*

IT administration, 12mg, single dose, n=3^{**}, 7 days, ddPCR

RNA editing in vivo in NHP spinal cord*

IT administration, 12mg, single dose, n=3^{**}, 7 days, ddPCR

*Undisclosed target. **Data of 2 NHPs not analyzable due to human error during injection procedure. IT: intrathecal, NHP: non-human primate

Consistent editing reported - including *in vivo* NHP - in the nervous system

*Undisclosed target. Conditions of the *ACTB* iPSC derived neurons experiment: gymnosis, 2.5µM, single dose, n=3-4, 2 weeks, dPCR and conditions of the *APP* iPSC derived neurons experiment: gymnosis, 10µM, single dose, washout, n=3, 2 weeks, dPCR. Conditions of the *ACTB* cerebral organoids of 130 days: gymnosis, 10µM, single dose, washout, n=7, 6 days, ddPCR, mean, SD and *APP* cerebral organoids of 150 days: gymnosis, 5µM, single dose, washout, n=5, 2 weeks, ddPCR, mean, SD. Conditions of the mice *in vivo* experiment: intracerebroventricular (ICV), 250µg, single dose, N=6, 4 weeks, editing: ddPCR and protein function: western blot, mean, SD and SEM. Conditions of the non-human primate (NHP) *in vivo* experiment: intrachecal (IT), 12mg, single dose, n=3**, 7 days. ** Data of 2 NHPs not analyzable due to human error during injection procedure.

Establishing a strong platform in multiple organs, targets and models

Nervous svstem

Targeting CNS and PNS

Liver

Targeting liver originated diseases

Cell models

Organoids

CNS: Central nervous system, PNS: peripheral nervous system

More than 50% RNA editing in human primary hepatocytes

A1AD: Alpha-1 antitrypsin deficiency.

Editing in InSphero Human Liver microtissues (LMTs)

Primary hepatocytes, Kupffer cells and liver endothelial cells in 3D spheroid

BSEP Bile Canaliculi

(InSphero data)

Live imaging of LMT

Stained with 5-CFDA (green), PI (red) and Hoechst (blue)

Presence of bile channels in LMTs by day 7 fluorescent dye 5-CFDA secreted from healthy cells into bile channels (canaliculi)

Editing of ACTB in human LMTs

Gymnosis, 1µM, constant dose, 3 pools of 24 LMTs per condition, 14 days, dPCR, mean, SD

Treatment of LMTs with 1 μ M EON for 14 days results in up to 40% RNA editing of *ACTB*

BSEP: Bile salt export pump, LMTs: Liver Microtissues constituted of primary hepatocytes, Kupffer cells and liver endothelial cells in 3D spheroid.

Up to 50% RNA editing of ActB in liver of mice

High *in vivo RNA* editing of *ActB* in the liver of mice reaching up to 50%

Advancing Axiomer[®] development across different models and targets in the liver

Conditions of ACTB editing experiment in human primary hepatocytes experiment: gymnosis, 10µM, single dose, N=6, 48 hours, dPCR; Conditions of the of SERPINA1 editing experiment in human A1AD patient hepatocytes experiment: transfection, 100 nM, single dose, N=2, 47 hours, dPCR, mean, SD. LMTs: human liver microtissues.

PBS

ActB-EON

Axiomer[®] PoC in the nervous system and liver across multiple models including *in vivo*

Consistent RNA editing reported

in all models in nervous system and liver

Up to 40% editing reported in the nervous system of mice *in vivo*

Up to 50% editing reported in the liver of mice *in vivo*

Approx. 50% editing reported in the nervous system of NHP *in vivo*

Axiomer[®] creating a new class of medicines with broad therapeutic potential

Correction	Protein modulation					
Mus = Mus						
Mutations correction Thousands of G-to-A mutations, many of them described in literature	Alter protein function or include protective variants Modified proteins achieving loss- or gain-of-functions that help addressing or preventing diseases	Disrupt >400 different types of PTMs Regulate protein activity, change localization, folding, preventing immune escape or slowing down degradation	Change protein interactions Changes localization, folding, protein function or prevents immune escape of glycosylated tumor antigens			
BROAD THERAPEUTIC POTENTIAL						

Target a wide variety of organs

Treat so-far undruggable targets

PTMs: Post-translational modifications.

Mutation correction with Axiomer[®] leads to protein recovery

Protein function in mice

ICV, 250µg, single dose, N=6, 4 weeks, western blot, mean, SEM

In the brain, Axiomer[®] EONs lead to 26-fold increase in protein function in the cortex after editing

CEP290 protein recovery in organoids

Gymnosis, 10µM, single dose, N=8, 2 weeks, IF, mean, SD

Significant increase in CEP290 protein levels and intensity was detected at the basal body of LCA07-3 organoids treated with EONs after 2-weeks treatment

ICV: Intracerebroventricular injection, IMF: Immune Fluorescence; SD: standard deviation, SEM: Standard error of the mean, WT: wild type. Statistical significance was determined using Brown-Forsythe and Welch ANOVA test.

Axiomer[®] creating a new class of medicines with broad therapeutic potential

Correction	Protein modulation		
Hus + Hus			
Mutations correction Thousands of G-to-A	Alter protein function or include protective variants	Disrupt >400 different types of PTMs	Change protein interactions
mutations, many of them described in literature	Modified proteins achieving loss- or gain-of-functions that help addressing or preventing diseases	Regulate protein activity, change localization, folding, preventing immune escape or slowing down degradation	Changes localization, folding, protein function or prevents immune escape of glycosylated tumor antigens
Wutation correction leading to protein recovery	Variant resulting in a dominant negative effect	Reduction of protein phosphorylation altering protein function	Variant impacting protein interaction with sugar

Changing a protein binding site with Axiomer[®] leads to an increased LPL activity

Generation of an ANGPLT3 variant to activate lipoprotein lipases

ANGPTL3 is an angiopoietin-like factor that inhibits lipoprotein lipases (LPL)

 Increase triglyceride, cholesterol, and nonesterified fatty acids in plasma leading to an increased risk of CVD

Reported variant changing protein binding site of ANGPTL3

- Significantly decreased triglycerides, LDLcholesterol, and total cholesterol
- Significantly decreased odds ratio for coronary artery disease

Heparin binding was shown to be essential for proper ANGPTL3 function

 Disruption of the heparin binding site is highly likely to abrogate LPL inhibition, ultimately leading to lipid lowering in the serum

CVD; cardiovascular disease. LDL: low density lipoprotein, LOF: Loss of function. References: Ono M et al. J Biol Chem. 2003 Oct 24;278(43):41804-9; Romeo S et al. J Clin Invest. 2009 Jan;119(1):70-9; Dewey FE et al. N Engl J Med. 2017 Jul 20;377(3):211-221.

ANGPTL3 variant disrupting essential protein binding site

More than 60% RNA editing of *ANGPTL3* in primary human hepatocytes derived spheroids

Gymnosis, 1µM, single dose, N=1 or 2, 5 days, dPCR, mean, SD

More than 60% RNA editing of *ANGPTL3* in primary human hepatocytes derived spheroids

Up to 80% decrease in heparin binding in Huh-7 cells

Gymnosis, 1µM, single dose, N=1, 72 hours, western blot

Up to 80% decrease in heparin binding in Huh-7 cells

Axiomer[®] RNA-editing platform technology

Versatile

- Ability to target multiple organs and a wide range of diseases with numerous applications
- Potential to include protective variants
- Designed to target a variety of RNA species (mRNA, miRNA, lncRNA)

Safety

- No permanent changes
- No irreversible DNA damages and less risk of permanent side effects

High specificity

• Highly targeted therapeutic with potential to minimize off-target effects and reduce the risk of adverse reactions

Transient

- Provide a long-lasting therapeutic effect that does not require frequent dosing
- Potential to target diseases for which permanent changes would be deleterious

No viral vector

- No risk of immunogenicity or capacity limitation due to the vector
- Efficient development and faster production increase the chance to reach market

Endogenous ADARs

- Leverage body's potential to treat disease
- Less risk of off-target effect vs. exogenous ADARs

ADAR: Adenosine deaminase acting on RNA, mRNA: messenger RNA, miRNA: microRNA, lcRNA: long non-coding RNA

ProQR® IT'S IN OUR RNA