

DEVELOPING RNA-EDITING MEDICINES

for patients in need

Nasdaq: PRQR July 2025

Forward-looking statements

This presentation contains forward-looking statements. All statements other than statements of historical fact are forward-looking statements, which are often indicated by terms such as "anticipate," "believe," "could," "estimate," "expect," "goal," "intend," "look forward to", "may," "plan," "potential," "predict," "project," "should," "will," "would" and similar expressions. Such forward-looking statements include, but are not limited to, statements regarding our strategy and future operations, statements regarding the potential of and our plans with respect to our technologies and platforms (including Axiomer[™]), our preclinical model data, our pipeline targets, our other programs and business operations, our current and planned partnerships and collaborators and the intended benefits thereof, including the collaboration with Lilly and the intended benefits thereof, including the upfront payment, equity investment, and milestone and royalty payments from commercial product sales, if any, from the products covered by the collaboration, as well as the potential of our technologies and product candidates; our updated strategic plans and the intended benefits thereof, our plans to seek strategic partnerships for our ophthalmology assets, and our financial position and cash runway. Forward-looking statements are based on management's beliefs and assumptions and on information available to management only as of the date of this presentation. Our actual results could differ

materially from those anticipated in these forward-looking statements for many reasons, including, without limitation, the risks, uncertainties and other factors in our filings made with the Securities and Exchange Commission, including certain sections of our annual report filed on Form 20-F. These risks and uncertainties include, among others, the cost, timing and results of preclinical studies and other development activities by us and our collaborative partners whose operations and activities may be slowed or halted due to shortage and pressure on supply and logistics on the global market; our reliance on contract manufacturers to supply materials for research and development and the risk of supply interruption from a contract manufacturer; the ability to secure, maintain and realize the intended benefits of collaborations with partners, including the collaboration with Lilly; the possible impairment of, inability to obtain, and costs to obtain intellectual property rights; possible safety or efficacy concerns that could emerge as new data are generated in research and development; general business, operational, financial and accounting risks; and risks related to litigation and disputes with third parties. Given these risks, uncertainties and other factors, you should not place undue reliance on these forward-looking statements, and we assume no obligation to update these forward-looking statements, even if new information becomes available in the future, except as required by law.

ProQR development pipeline

	TARGET	DISCOVERY	NON-CLINICAL	CLINICAL	NEXT MILESTONE	ESTIMATED POPULATION
DEVELOPMENT PIPELINE						
AX-0810 for Cholestatic diseases	NTCP				Initial data Q4 2025 ¹	~100K patients ²
AX-2402 for Rett syndrome	MECP2 R270X				Candidate selection in 2025	~5K patients
AX-1412 for Cardiovascular disease	B4GALT1				Scientific update in mid 2025	~200M patients ³
AX-2911 for MASH	PNPLA3				Candidate selection in 2025	~8M patients
DISCOVERY PIPELINE						
AX-1005 for CVD	Undisclosed					~200M patients
AX-0601 for obesity and T2D	Undisclosed					~650M patients
AX-9115 for rare metabolic condition	Undisclosed					
AX-2403 for Rett syndrome	MECP2 R168X					~6K patients
AX-2404 for Rett syndrome	MECP2 R255X					~5K patients
AX-2405 for Rett syndrome	MECP2 R294X					~6K patients
AX-2406 for Rett syndrome	MECP2 R133H					
AX-3875 for rare metabolic & CNS disorder	Undisclosed					
AX-4070 for rare CNS disorder	Undisclosed					
PARTNERED PIPELINE						
10 targets (option to expand to 15)	Undisclosed	Progress undisclosed				Lilly

¹CTA regulatory clearance for AX-0810 is pending. ²Approximately 100K people affected with Primary Sclerosing Cholangitis and Biliary Atresia in US and EU5. ³Approximately 200 million people suffer from too high a level of cholesterol in US and EU5. SLC10A1 is the gene that encodes for NTCP protein. CVD: Cardiovascular Diseases, NASH: Nonalcoholic steatohepatitis, T2D: Type 2 Diabetes. | References: Trivedi PJ, et al. Clin Gastroenterol Hepatol. 2022 Aug;20(8):1687-1700.e4; Schreiber RA, et al. J Clin Med. 2022 Feb 14;11(4):999; Tsao CW, et al. Circulation. 2022;145(8):e153–e639. World Health Organization, World Gastroenterology Organization

Catalyst overview

4 trial readouts expected in 2025-2026, cash runway into mid-2027

AX-0810 for Cholestatic diseases

- ✓ CTA submission Q2 2025
- Top-line data Q4 2025

AX-2402 for Rett Syndrome

- Clinical candidate selection in 2025
- Anticipated trial start and top-line data in 2026

AX-1412 for Cardiovascular disease

• Non-clinical data update in mid 2025

AX-2911 for MASH

- Clinical candidate selection in 2025
- Anticipated trial start and top-line data in 2026

Partnerships

- Opportunity to earn up to \$3.75B in milestones in the Lilly partnership
- Opportunity to receive a \$50 M opt-in fee from Lilly for expansion to 15 targets
- Opportunity for other strategic partnerships

Axiomer[™] advancing to value inflection

INNOVATIVE ADAR-ENABLED RNA EDITING SCIENCE DRIVING ADVANCEMENT OF AXIOMERTM

supported by robust IP estate

HIGH IMPACT STRATEGIC PARTNERSHIPS

Eli Lilly, Rett Syndrome Research Trust

PIPELINE WITH TRANSFORMATIVE POTENTIAL FOR DISEASES WITH HIGH UNMET MEDICAL NEEDS

Across rare and common liver and CNS disease

RUNWAY INTO MID 2027

€ 132.4 million cash and cash equivalents as of end of Q1 2025, providing runway into mid-2027

ProQR's Axiomer[™] ADAR journey since 2014

ProQR invents oligo mediated RNA Editing recruiting endogenous ADAR 2014	Key ADAR patents get granted in EU and US 2020–20	23	ProQR pivots to solely focus on ADAR editing 2022	ProQR's broad AD/ patents upheld in oppositions in seve jurisdictions 2023–2024	AR eral	
2014-2018+ 20 ProQR secures Pro broad key patent options positions on ADAR- AD mediated RNA in standard distributions editing ADARs: Adenosine deaminases acting on RNA, E	015-2021 oQR timizes the OAR platform stealth	2021 ProQR and Eli Lilly enter into first 5 target partnership worth \$1.25B	2022 ProQR and Eli Lilly expand partnership to 10 targets worth ~\$3.9B	2023 ProQR demonstrates >50% editing in CNS and liver in NHP and announces pipeline	 2024 ProQR first in the field to report a disease relevant biomarker effect using Axiomer in NHP. Initial indication of good safety profile. Initial clinical validation of ADAR editing 	 2025 Advanced AX-0810 NTCP program to clinical development Topline data Q4

Axiomer[™] EONs unlock cellular machinery potential to treat diseases

By attracting ADARs and allowing highly specific editing

Enzyme that performs specific form of natural RNA editing, called **A-to-I editing.** During A-to-I editing an **A nucleotide** (adenosine) is changed into an I nucleotide (inosine)

Creating a new class of medicines with broad therapeutic potential

AX-0810 Program

Targeting NTCP to address cholestatic diseases unmet medical need at the root cause

AX-0810 RNA editing therapy targeting NTCP for cholestatic diseases

Cholestatic diseases have high unmet medical need. Patients accumulate bile acids in liver leading to fibrosis and ultimately liver failure.

Initial indications are **Primary Sclerosing Cholangitis** affecting adults and Congenital **Biliary Atresia** affecting pediatrics early in life. Both conditions have no approved therapies and may require liver transplantation.^{1,2}

- Biliary Atresia is projected to affect ~20,000 pediatric individuals in US and EU.
- Primary Sclerosing Cholangitis is projected to affect more than 80,000 individuals in US and EU.

AX-0810 is a unique therapeutic approach leading to a potentially disease modifying therapy by targeting the NTCP channel which is responsible for majority of bile acid re-uptake in liver cells.

NTCP modulation leads to positive effect on different mechanism involved in cholestasis

Zeng J, Fan J, Zhou H. Cell Biosci. 2023 Apr 29;13(1):77; Trauner M, Fuchs CD. Gut 2022;71:194–209; Halilbasic E, Claudel T, Trauner M. J Hepatol. 2013 Jan;58(1):155-68.

NTCP variants reduced bile acids uptake into liver in health population research

Healthy population discovered with NTCP variants that reduces bile acids uptake into liver¹⁻⁴

	Г	
		THE JOCHNAL OF BIOLOGICAL CHEMISTER O 2004 by The American Society for Size
		Ethnicity-depen
		Cotransporting
		Critical for Bile
Contact of the Pa		
. A local		Richard H. Ho
13.		From the <i>Division</i> Medical Center, No.
TSEVIER		Department of Ped the Department of
ELSEVIER		of Science in Clini
REVIEW	late co-transpo	The key transporter per
sodium taurocl	nolate co	bile acids from portal cir
Source de	ficiency	transporter is thought to b
рогурерсте	Köhler ^{b,1} , B, Röthlisber	of enterohepatic recircula cyte function. Therefore, fr
AL Schneider ^{a, 1,*} , H	, Komer	phisms in this transporter
AL JUN	ision of Pediatric Specialties, Department	tion. However, little is kno
* Swiss Pediatric Liver Center, UN	Switzerland	geneity in NTCP. In this stu ence of multiple single n
Geneva, Geneva, Smith b Department of Pediatrics, Hosp	testing and genetic counselling, 20110	NTCP in populations of Eu
Laboratory for human set	sital of Aarau, series	single nucleotide polymor
o Department	021	nificant loss of transport i surface biotinylation expe
Available online 29 October	tustion: Little is	tered transport activity of
	Abstract Introduction 2015 Vaz et a	part to decreased plasma n
KEYWORDS	cholate Co-transporting Polypep	expression patterns were alleles were expressed in H
NTCP deficiency;	dice. Several new cases have been	brane expression was as
Hypercholand	mutations in SLC104 is the discuss	$(Ser^{267} \rightarrow Phe)$ variant, see
	Material and methods. We available the mutation and review	exhibited a near complete uptake yet fully normal tr
	Results: Our female patient	bile acid substrate estrone
	thrive akin to the till of pruri	and specific for bile acid s
	gamma-glutamyl transferase u	ingly, our study indicates
	with focal steatosis. Ursodeox	being carriers of such pol
	tored regularly. At age	ethnicity.
	analysis revealed a homozyse	* This work was supported by
	codon prediction carry the c.800C>T (p.Ser26	Grants GM54724 and GM31304, of Health Pharmacogenetics
		(U01GM61374) under Grant U01 Institutes of Health-funded Vand
	HARD Body Mass Index; NTCP, Na-tar	velopment Program Training Awa iments, data analysis, and data
Abbreviations: BA,	Solute Carrier 10A1; TBA, total bite actor Solute Carrier 10A1; TBA, total bite actor Solute Carrier IoA1; TBA, total bite actor	through the use of the Vanderbil
* Corresponding auth	or at: Pediatric und. Geneva, Switzerland.	Grants CA68485, DK20593, and
University of Geneva, E-mail address: an	ais.schneider@procurate	article must therefore be hereby r
¹ These authors con		with 10 U.S.C. Section 1734 (016)

dent Polymorphism in Na⁺-taurocholate

Vol. 279, No. 8, Issue of February 20, pp. 7213-7222, 2004

Polypeptide (SLC10A1) Reveals a Domain Acid Substrate Recognition*

emistry and Malacular Rielony. Inc.

Received for publication, June 2, 2003, and in revised form, December 1, 2003 Published, JBC Papers in Press, December 2, 2003, DOI 10.1074/jbc M305782200

25%, Brenda F. Leaket, Richard L. Roberts, Wooin Leet, and Richard B. Kimt***

n of Clinical Pharmacology, Departments of Medicine and Pharmacology, Vanderbilt University a) Common Francisco (Commonly), Separation of Section of Pediatric Hermatology), valuations Concerning subsellite, Pranessee 37232–4902, the Rybiosian of Pediatric Hermatology (Nocology, Ilatrics, Vanderbilt University Medical Center, Nashville, Tennessee 37232–3510, and the Master Pathology, Vanderbilt University Medical Center, Nashville, Tennessee 37232–3561, and the Master al Investigation Program, Vanderbilt University School of Medicine, Nashville, Tennessee 37232

own regarding genetic heteroifically four nonsynonymous phisms associated with a sigunction were identified. Cell essed using immunofluores- lar uptake and efflux (5). on in the transporter critical ubstrate recognition, Accordat and that the likelihood of

thy the payment of page charges. This marked "advertisement" in accordance by to indicate this fact. K58404). The costs of publication of

ponsible for hepatic uptake of Bile acids, synthesized from the enzymatic catabolism of culation is Na*-taurocholate cholesterol, are the major solutes in bile, essential for the de (NTCP, SLC10A1). This maintenance of bile flow and biliary lipid secretion (1). In be critical for the maintenance addition, an important mechanism for cholesterol homeostasis tion of bile acids and hepato-occurs through its elimination in the form of bile acids. Indeed anctionally relevant polymor- de novo synthesis of bile acids from cholesterol is thought to r would be predicted to have account for nearly half of the daily elimination of cholesterol le acid homeostasis/liver func-from the body (1). In the gastrointestinal tract, bile acids also modulate the release of pancreatic secretions and gastrointesady, we demonstrate the presof lipid-soluble vitamins (2, 3). Furthermore, their detergent properties assist solubilization of cholesterol and dietary fats in the intestine. Bile salts are efficiently reabsorbed in the small intestine and are returned to the liver via the portal circulation and resecreted into hile, thus forming an enterohepatic circuit riments indicated that the al-and resecreted into bile, thus forming an enterohepatic circuit f T668C ($lle^{223} \rightarrow Thr$), a vari-(4). The efficient enterohepatic recirculation of bile acids is mericans, was due at least in maintained by polarized expression of bile acid uptake and sembrane expression. Similar efflux transporters in the intestine and liver (4). Moreover. observed when the variant taurine or glycine conjugates of bile acids tend to be polar and HepG2 cells, and plasma mem- hydrophilic, thus dependent on transporter proteins for cellu-

py. Interestingly the C800T In the liver, it is estimated that Na⁺-dependent transport on only in Chinese Americans, pathways account for greater than 80% of the hepatic uptake of loss of function for bile acid conjugated bile acids such as taurocholate (6-10). The transansport function for the non- porter responsible for the observed Na⁺-dependent uptake of sulfate, suggesting this posi- conjugated bile salts is Na°-taurocholate cotransporting polypeptide (NTCP,1 SLC10A1) (11-14). This bile acid uptake transporter, whose function is coupled to a sodium gradient functionally important poly- (15), is expressed exclusively in the liver and localized to the basolateral membrane of the hepatocyte (16). The human ymorphisms is dependent on NTCP gene encodes a 349-amino acid protein (14) and shares 77% amino acid sequence identity with rat Ntcp (17). Hagenbuch et al. (18) demonstrated that, when Xenopus laevis oocytes United States Public Health Service were coinjected with total rat liver mRNA and antisense oligoby the NIGMS, National Institutes nucleotides specific to Ntcp, the expressed Na⁺-dependent tau-I, by the NIGMAS, National Institutes Research Network and Database IN HL68062, and by an NCI, National derbit Clinaci Oncology Research due and K12-CA00025 to R. H. H. R. Reper-presentation were performed in part spession or presentation were performed in part function would be predicted to significantly affect enterobu-tion of the sector of th university Medical Center Cell Im-patic circulation of bile acids and directly affect cellular signal-ing mathematic impactantly involved in shelpertared homostaria ing pathways importantly involved in cholesterol homeostasis

One potential source of altered NTCP function may be go

d D Viruses and Bile Salts on Molecular Determinants on Sodium

He,** Bijle Ren,* Zhiyi Jing,* Jianhua Sul,* Wenhui Li* Inton Medical College and Chinese Academy of Medical Science

ting polypeptide (NTCP) is responsible for the majority of sodianges ang paryteres (vite of a receptor for viral entry of hepaticis B virus to functions as a cellular receptor for viral entry of hepaticis B virus a tunctions as a consist receptor for visits entry or superious to visits eraction between NTCP and the pre-SI domain of HBV large envelope attinuous on avecas is a ce anno use prevers unanno or a sa a sarbe enversage ons of NTCP are independent or if they interfere with each other. Here ms or vite, or are independent or at they distorter with only other, show the P blocks taurocholate uptake by the receptor; conversely, some bile nonces tauto possibilities eritical for bile salts binding severely impair jons of NTCP residues critical for bile salts binding severely impair is important for sodium binding also inhibit viral infection. The rphism (SNP) found in about 9% of the East Asian population, why or the ability to support HBV or HDV infection in cell culture. intry or the nonity in support the vier entry intertaint in the strength, ical for HBV and HDV entry overlap with that for bile salts uptake by at sor ran v and rarv enery over up been snot on to vice basis upwave of sormal function of NTCP, and bile acids and their derivatives hold

is D virus (HDV), are important human pathogens. Available therni 27 virus (212) v.), are important numan paraogens, Avanaute inter-dinically available for HDV infection. A liver bile acids transporter tical for maintaining homeostasis of bile acids serves as a func-CP-binding lipopeptide that originates from the first 47 amino late transport. Some bile salts dose dependently inhibit HBV boare transport. Some one same some separation of masters and v s of NTCP critical for HBV and HDV entry overlap with that for A DECEMBER OF THE ADDRESS AND ADDRESS ADDR ADDRESS ADD their derivatives hold potential for development into novel

lepG2 cells complemented with human or treeshrew NTCP. Represerves composition of the second s aa] 157 to 165) or mouse NTCP (aa 84 to 87) with their human tterparts converted these NTCPs to functional receptors for and HDV, respectively. Thus, HepG2 cells complemented a human NTCP provide a valuable and convenient in vitro cell are system for increasing our understanding of the mecha incomparison to increasing our more summer of incomparison of viral entry and for the development of novel antiviral uman NTCP (SLC10A1) is a multiple-transme

that is predominantly expressed at the basolateral membr

¹Ho RH, et al. J Biol Chem. 2004 Feb 20;279(8):7213-22; ²Vaz FM, et al. Hepatology. 2015 Jan;61(1):260-7; ³Schneider AL, et al. Clin Res Hepatol Gastroenterol. 2022 Mar;46(3):101824; ⁴Slijepcevic D, et al. Hepatology. 2018 Sep;68(3):1057-1069.

NTCP modulation validated in vitro, vivo and clinic

Reducing liver bile acids toxic overload via NTCP modulation is a key driver for hepatoprotective effects

Bulevirtide (Hepcludex) is a daily SC injected NTCP inhibitor approved for Hepatitis D. NTCP channel is a known transporter for bile acids and hepatitis virus from bloodstream to the liver.

1. Slijepcevic D, et al. Hepatology. 2018 Sep;68(3):1057-1069; 2. Wedemeyer H, et al. N Engl J Med. 2023 Jul 6;389(1):22-32; 3. Wedemeyer H, J Hepatol. 2024 Oct;81(4):621-629.; 4. Dietz-Fricke C, JHEP Rep. 2023 Mar 15;5(4):100686.

NTCP modulation approach broadly validated

Reducing liver bile acids toxic overload via NTCP modulation is a key driver for hepatoprotective effects

HUMAN GENETICS

Healthy population discovered with NTCP variants that reduces bile acids uptake into liver¹⁻³

IN VITRO

NTCP variant leads to an 8-fold decrease of bile acids re-uptake *in vitro*

IN VIVO

NTCP modulation demonstrated effectivity in mouse cholestatic disease model, with 2- to 3-fold change in conjugated bile acids⁴⁻⁵

IN CLINIC

Clinical PoC with bulevirtide in Ph3 Hepatitis D trial, for which liver improvement occur in patients, even without virologic response⁶⁻⁸

Bulevirtide (Hepcludex) is a daily SC injected NTCP inhibitor approved for Hepatitis D. NTCP channel is a known transporter for bile acids and hepatitis virus from bloodstream to the liver. ¹Ho RH, et al. J Biol Chem. 2004 Feb 20;279(8):7213-22; ²Vaz FM, et al. Hepatology. 2015 Jan;61(1):260-7; ³Schneider AL, et al. Clin Res Hepatol Gastroenterol. 2022 Mar;46(3):101824; ⁴Slijepcevic D, et al. Hepatology. 2018 Sep;68(3):1057-1069; ⁵Salhab A, et al. Gut. 2022 Jul;71(7):1373-1385; ⁶Wedemeyer H, et al. N Engl J Med. 2023 Jul 6;389(1):22-32; ⁷Wedemeyer H, J Hepatol. 2024 Oct;81(4):621-629.; ⁸Dietz-Fricke C, JHEP Rep. 2023 Mar 15;5(4):100686.

Human genetics validates NTCP modulation as strategy for cholestatic disease

LIVER WITH AX-0810 STRATEGY CHOLESTATIC DISEASE FOR DISEASED LIVER High concentration of bile acids AX-0810 modifies the NTCP channel to *limit bile acids uptake while preserving all* in hepatocytes other functions of the channel NTCP 068R Inosine ADAR BA, Biliary atresia; PSC, Primary Sclerosing Cholangitis

- The AX-0810 program introduces a variant in individuals with cholestatic disease to lower bile acids concentration in hepatocytes by a single A-to-I change
- The AX-0810 program is designed to be a disease modifying treatment
 - To alleviate symptoms in PSC and BA
 - To limit inflammation and fibrosis linked to bile acid toxicity
 - To prevent or delay the development of cirrhosis, organ failure and need for transplant

EON mediated editing demonstrates consistent editing of NTCP and impact on biomarker *in vivo*

EDITING EFFICIENCY

PLASMA TOTAL BILE ACIDS

Change from Baseline (N=1, 1-4mg/kg, 4 doses, LNP formulation IV, up to D39)

Control

EON A

- EON A results in consistent editing data in humanized mouse model and NHP *in vivo* with approx. 15% editing reaching expected NTCP modulation
- Reaching >2-fold changes in biomarkers - expected impact on plasma bile acids levels following NTCP EON treatment

PoC in NHP on bile acid profile and TUDCA elimination

Change in Plasma BA Profile

- Conjugated bile acids are transported by NTCP back to the liver, change in plasma BA profile confirms NTCP specific modulation
- High confidence on NTCP EON treatment to positively impact BA toxic load in the liver

TUDCA elimination rate from plasma in NHP

Exploratory study, early generation EON, n=5-7, 10mg/kg, 4 doses, SC, D51

- TUDCA is a Tauro-conjugated bile acid specifically transported by NTCP from the plasma to the liver
- Decrease in TUDCA plasma clearance kinetics further confirm NTCP target engagement for EON treated NHP

Conditions in the NHP experiment on the left: N=1, 1-4mg/kg, 4 doses, LNP formulation, IV, up to D42, LC-MS/MS. Mao F, et al. J Biol Chem. 2019 Aug 2;294(31):11853-11862; Haag M, et al. Anal Bioanal Chem. 2015 Sep;407(22):6815-25.; Wedemeyer H, et al. N Engl J Med. 2023 Jul 6;389(1):22-32.

AX-0810 clinical candidate selected with enhanced potency and stability profile

AX-0810 clinical candidate has an enhanced potency profile over EON A in PHH

Transfection, n=3, 72 hours, dPCR, mean±SEM

- AX-0810 clinical candidate is a GalNAc conjugated EON
- 5.5-fold increase in potency over early generation NTCP editing oligonucleotide
- Improved stability profile *in vitro*
- Confirmed class safety, with no hepatotoxicity or immunostimulatory score

First in human trial of AX-0810 to establish target engagement

Integrated single/multiple ascending dose study design

Treatment

AX-0810 GalNAc conjugated editing oligo-nucleotide

Objectives

- Confirm target engagement as measured by biomarkers
- Assess safety, tolerability, and PK of AX-0810

Trial design

- Combined single and multiple ascending dose
- ≥60 heathy volunteers, 4 weeks dosing phase followed by 12 safety weeks follow-up
- 5 weekly subcutaneous injections
- Baseline and placebo-controlled design
- Standardized conditions for assessment of bile acids at multiple timepoints
- DMC safety reviews before proceeding to next dose and dose escalation

Key endpoints

- Change in bile acids levels and profile in plasma and urine, liver biomarkers
- Circulating RNA as exploratory endpoint
- CTA submtted in Q2 2025

Top-line data in Q4 2025

NTCP and bile acids are involved in a variety of therapeutic areas

Providing opportunity across multiple indications

Cholestatic diseases

- Primary Sclerosing Cholangitis (PSC)
- Biliary Atresia
- Primary Biliary Cholangitis (PBC)
- Alagille syndrome
- Dubin-Johnson Syndrome
- Progressive Familial Intrahepatic Cholestasis (PFIC)
- Drug-Induced Cholestasis
- Alcoholic Liver Disease
- Secondary Biliary Cirrhosis
- Rotor syndrome
- Neonatal cholestasis

Neurological diseases

- Multiple Sclerosis
- Amyotrophic Lateral Sclerosis
- Neurological diseases
- Epilepsy
- Parkinson's Disease

Infectious disease

- Parasitic Infections
- Sepsis-Associated Cholestasis
- Viral Hepatitis: Hepatitis A, B, C, D, E

Metabolic diseases

- Hyperlipidemia
 Lysosomal
- Hypertension
- MASH
- Obesity
- Diabetes

- storage diseases
- Hyper
 - cholesterolemia
- ASCVD

AX-2402 Program

Targeting MECP2 to restore protein functionality in Rett Syndrome, a severe neurodevelopmental disorder

AX-2402 RNA editing therapy targeting MECP2 for Rett Syndrome

Rett Syndrome is a **devastating and progressive neurodevelopmental disorder** caused by variants in the transcription factor Methyl CpG binding protein 2 (*MECP2*). There is a **high unmet need for a disease modifying therapy**.

Nonsense variants lead to **severe phenotypes.** They represent more than one third **of Rett Syndrome** cases and are projected to affect **20,000 individuals** in US and EU.^{1,2}

Rett Syndrome is **not a neurodegenerative disorder** and restoring levels of the MECP2 protein has shown to **reverse symptoms** in mice.³

Axiomer has the potential to **restore the precise level of MECP2 protein regulatory function**, which is lacking in Rett Syndrome, and become a disease modifying therapy.

Rett Syndrome Research Trust partnership includes \$9.2 M in funding; collaboration established in January 2024, expanded in December 2024

¹Krishnaraj R, et al. Hum Mutat. 2017 Aug;38(8):922-93; ²RSRT 2023 conference; ³Guy J, et al. Science. 2007 Feb 23;315(5815):1143-7.

Axiomer[™] has the potential to restore physiological levels of functional MECP2

AX-2402 correcting MECP2 R270X into WT-like R270W

R270W variant demonstrates wild-type like profile

AX-2402 can restore physiological levels of functional MECP2 potentially reverting Rett syndrome into a WT like phenotype¹

¹Colvin, S. (2023) thesis. Massachusetts Institute of Technology. Figures adapted from: Colvin, S. (2023) thesis. Massachusetts Institute of Technology

EON mediated editing in patient's cells increases mRNA levels and restores protein expression

PTC recoding leading to absent NMD mediated RNA degradation

EON, Editing oligonucleotide; NT, Non-treated; TF, transfection, Conditions panel on the left and middle: 100 nM EON, transfection, 48h, N=2, mean±SEM. Conditions panel on the right: MeCP2-R270X-NanoLuc activity; 100 nM EON, transfection, 48h, N=8, mean±SEM.

Consistent CNS editing demonstrated across species

- Up to 40% editing *in vivo* leading to 26-fold change in protein function recovery in brain tissues of interest at 4 weeks with a single dose in mice model
- In rat, Axiomer EONs demonstrated up to 50% editing *in vivo* with sustained editing between W2 and W4 after single dose
- Up to 30% RNA editing reported in brain and approx. 50% in spinal cord in NHP in vivo

* Data of 2 NHPs not analyzable due to human error during injection procedure.

Preliminary clinical trial design

- Preliminary Phase 1/2 SAD & MAD design
- Up to 18 subjects with the R270X mutation
- Primary objective: safety, tolerability and pharmacokinetics
- Secondary objectives: target engagement and biomarkers
- Financially supported by \$8.2 M funding provided by Rett syndrome Research Trust
- Clinical candidate selection in 2025
- Top-line data expected in 2026

AX-1412 Program

Targeting B4GALT1 to reduce the risk of cardiovascular diseases

AX-1412 RNA editing therapy targeting B4GALT1 for cardiovascular diseases

Leading causes of death in the world

~18 million people die from CVDs every year (32% of all global deaths) Despite therapies, the unmet medical need remains.

AX-1412 is designed to provide people with a protective genetic variant of B4GALT1 that is associated with **36%¹ reduction in the risk of cardiovascular disease**.

AX-1412 may become a **stand-alone cardiovascular therapy** that may also work **synergistically with standard of care** to further reduce risk of CVDs.

¹Montasser ME, et al. Science. 2021 Dec 3;374(6572):1221-1227

EON-mediated editing of B4GALT1 leads to meaningful effect on key biomakers in E3L.CETP Mice

Following treatment with EON B, a marked reduction in total cholesterol, ApoB, and LDL-c by observed already at Day 19 confirms our approach to address cardiovascular diseases

B4GALT1 EON leads to a positive shift in lipoprotein profiles

Specifically targeting atherogenic lipoproteins

(N=10, 2mg/kg, LNP formulation, IV Q1W, D46) VLDL LDL HDL 4-Direction of improvement Cholesterol (mmol/L) 2-10 20 0 Fraction — Control - EON B

Impact on lipoprotein profile following editing

of B4GALT1 in E3L.CETP mice

- Treatment with EON B significantly decreases VLDL and LDL cholesterol compared to control
- These lipoproteins are associated with increased cardiovascular risk due to their role in atherosclerotic plaque formation
- HDL cholesterol which supports reverse cholesterol transport and is associated with reduced cardiovascular risk, remains unchanged

Summary & next steps AX-1412 for CVD

EON-MEDIATED RNA EDITING OF B4GALT1

leads to the required reduction in galactosylation, reflecting the human genetics observed effect

LNP-DELIVERED EON EDITING OF B4GALT1

leads to editing and meaningful changes in biomarker effect on LDLC, CEPT, cholesterol and fibrinogen in an industrystandard in vivo disease model

FURTHER OPTIMIZATION OF A GALNAC DELIVERED EON ONGOING

to achieve a TPP desirable for CVD

expected in mid 2025

AX-2911 Program

Targeting PNPLA3 to address unmet medical needs in MASH

AX-2911 RNA-editing therapy to address Metabolic dysfunction associated steatohepatitis (MASH)

MASH and subsequent stages of liver disease **are very prevalent and still on the rise worldwide**. MASH individuals have a high unmet medical needs due to the **progressive** nature of the disease (cirrhosis and hepatocellular carcinoma) and **limited therapeutic options** available¹

PNPLA3 (patatin-like phospholipase domain-containing 3) I148M is a variant **commonly reported** in the MASH population worldwide (20-60% of the patients) and is known as **associated risk factor**.^{2,3} Approximately 8 million individuals in US and EU are homozygous for the 148M variant.

Axiomer EONs have the potential to change the Methionine into a Valine bringing the **PNPLA3 protein back to a WT-like functional conformation**.

¹Sandireddy R, et al. Front Cell Dev Biol. 2024 Jul 16;12:1433857; ²Romeo S, et al. Nat Genet. 2008 Dec;40(12):1461-5; ³Salari N, et al. BMC Endocr Disord. 2021 Jun 19;21(1):125.

Axiomer[™] creates a PNPLA3 protein with WT-like functionality

1481 and 148V reports equivalence in lipid droplet sizes

- The wild-type 148I shows smaller lipid droplets, reflecting normal lipid metabolism
- The 148M variant induces significantly larger lipid droplets, consistent with its pathogenic role in lipid metabolism disorders
- The corrected variant 148V results in wild-type like droplet sizes, suggesting a corrective effect on lipid accumulation, similar to 148I

Treatment conditions: HeLa cells, plasmid, transfection, 250uM linoleic acids, 24h, cell lipase activity by IF One-way ANOVA, ****, P<0.0001; Mean, SEM.

EON mediated PNPLA3 editing leads to over 50% RNA editing and change in lipid droplet

Editing of PNPLA3 in PHH 100nM EON, transfection, 72h, dPCR, mean, SEM, n=3

Change in intracellular lipid droplets post PNPLA3 148V EON treatment

Bodipy/DAPI stainings, 5μM EON, transfection, exposure to linoleic acid, mean, SEM, n=2

120 hours

Summary & next steps AX-2911 for MASH

Final optimization of AX-2911 EONs ongoing for clinical candidate selection in 2025

expected with 3-6 monthly dosing interval

CLINICAL TRIAL to start in 2026

Well positioned

to advance Axiomer™

CLINICAL TRIAL RESULTS EXPECTED

across 4 trials in 2025 and 2026

- Clinical PoC data of NTCP trial in 2025
- Up to 4 clinical trials with data readouts in 2025/2026

RICH DISCOVERY PIPELINE

with potential for broad pipeline expansion

- Large number of potential therapeutic applications in discovery pipeline
- Broad applicability beyond current discovery pipeline

LEADING IP POSITION

- Axiomer[™] is protected by >20 published patent families
- Continuously investing in expanding IP estate

VALIDATING STRATEGIC PARTNERSHIPS

- Eli Lilly collaboration valued up to \$3.9B, with opportunity for near-term milestones
- Rett Syndrome Research Trust cofinancing of AX-2402 program
- Selectively form additional partnerships

STRONG BALANCE SHEET

- € 132.4 million cash and cash equivalents as of end of Q1 2025
- Cash runway to mid-2027, excluding potential for additional BD-related upside

Progr® IT'S IN OUR RNA

Resource slides

ProQR - Corporate Presentation

ProQR Leadership Team

Management Team

Daniel de Boer Founder & CEO, Board Executive Director ProQR THERAPEUTICS

Gerard Platenburg Chief Scientific Officer, Board Executive Director

PROSENSA SISA PHARMING

Dennis Hom Chief Financial Officer

Cristina Lopez Lopez, MD, PhD Chief Medical Officer

Sheila Sponselee Chief People and Operations Officer

tomorrows

Begoña Carreño

🖉 almirall

Alison Lawton Kaleido aenzvme

Martin Maier, PhD

2 Alnylam

Key Advisors

John Maraganore, PhD Board advisor

2/Alnylam

Peter A. Beal, PhD ProQR Chief ADAR Scientist

NOVARTIS

Bart Filius

Dinko Valerio

IONIS €

Crucell AescAp

Phillip D. Zamore, PhD Scientific Advisory Board

hhmi Howard Haghas \mathcal{Q} Alnylam .≪Voyager

Alnylam FREELINE

Theresa Heggie

Driving the development of optimized EONs for therapeutic use

 \bigcirc

ADAR-binding region (ABR)

Backbone modifications enable ADAR binding, and disable off-target editing

Optimized sequence and chemistry define functionality

Prevent off-target ('bystander') editing

Ensure bioavailability (cell and tissue uptake)

Offer safety and tolerability at therapeutic doses

ADAR: Adenosine deaminase acting on RNA, EON: Editing oligonucleotide, Nt: nucleotides

Leading IP supporting ADAR-mediated RNA editing platform technology

- Axiomer[™] IP strategy commenced in 2014 with first patent application filings
- Currently 27 published patent families, comprising 37 national/regional patents
- Axiomer[™] IP portfolio is constantly expanding
- Oppositions/appeals and several Third-Party Observations have been filed against a variety of applications and patents in the Axiomer[™] IP portfolio, all by strawmen

ProQR Axiomer[™] leading IP estate for ADAR-mediated RNA editing

- ProQR's Axiomer[™] IP contains 3 early RNA editing platform patent families covering single-stranded oligonucleotides that recruit **endogenous** ADAR
- Oppositions/appeals and Third-Party Observations have been filed throughout these three patent families
- First (2014): oligonucleotides with a complementary (**targeting**) and a stem-loop (**recruiting**) portion
- Second (2016): oligonucleotides without a stem-loop structure but with one or more mismatches and chemical modifications
- Third (2016): oligonucleotides without a stem-loop structure but with specific chemical modifications in the 'Central Triplet'

Overview of Axiomer[™] related patents

Docket	Priority	Feature	Status	Remarks
1 (0004)	17DEC2014	Targeted RNA Editing using endogenous ADARs	Granted AU BR <u>CA CN EP</u> IL IN <u>JP</u> NZ <u>US US</u> ZA	Platform IP
2 (0013)	22JUN2016	Short EONs with wobble and/or mismatch base pairs	Granted <u>AU</u> IL JP <u>KR US US US</u>	Platform IP
3 (0014)	01SEP2016	Chemically modified short EONs	Granted AU <u>CN EP</u> IL J <u>P KR</u> NZ <u>US US</u> ZA	Platform IP
4 (0016)	19JAN2017	EONs + protecting SONs (heteroduplex formation)	Granted <u>US</u>	Platform IP
5 (0023)	18MAY2018	PS linkages / chiral linkages (<i>e.g.,</i> PS, PN)	Granted AU US	Platform IP
6 (0025)	28JAN2019	Editing of PTC in exon 61 USH2A	Granted US	Target
7 (0026)	11FEB2019	Phosphonacetate linkages / UNA modifications	Published	Platform IP
8 (0029)	03APR2019	MP linkages	Granted JP	Platform IP
9 (0031)	24APR2019	Editing inhibition	Published	Platform IP
10 (0032)	13JUN2019	Benner's base (dZ)	Granted CN ZA	Platform IP – with UC Davis (P Beal)
11(0035)	23DEC2019	Editing in exon 35 of ABCA4 for Stargardt disease	Published	Target
12 (0039)	23JUL2020	Split EONs	Published	Platform IP
13 (0045)	14FEB2022	PCSK9	Published	Target
14 (0046)	15JUL2022	5'-GA-3' editing	Published	Platform IP – with UC Davis (P Beal)
15 (0048)	15JUL2022	diF modification	Published	Platform IP
16 (0051)	210CT2022	Heteroduplex Editing Oligonucleotide (HEON) complexes	Published	Platform IP
17 (0052)	24NOV2022	HFE	Published	Target
18 (0053)	09DEC2022	B4GALT1	Published	Target
19 (0054)	01DEC2022	ALDH2	Published	Target
20 (0055)	20JAN2023	AG1856 + (H)EONs	Published	Platform IP – with FU Berlin (A Weng)
21 (0057)	20FEB2023	ANGPTL3	Published	Target
22 (0058)	24MAR2023	KCC2	Published	Target
23 (0059)	24MAR2023	PNms linkages	Published	Platform IP
24 (0060)	27MAR2023	NTCP	Published	Target
25 (0061)	16JUN2023	RELN	Published	Target
26 (0062)	07SEP2023	MC4R	Published	Target
27 (0066)	16NOV2023	GALK1	Published	Target

ProQR Axiomer[™] IP

Broad coverage

- Axiomer[™] patent claims are broad and cover:
 - Any type of chemically modified oligonucleotide aimed at RNA editing of any possible target and any possible disease using endogenous ADAR
 - Specific targets, including SERPINA1 (A1AT deficiency), IDUA (Hurler syndrome), LRRK2 (Parkinson's disease)
 - Oligonucleotides with chirally-controlled linkages
 - Oligonucleotides with all sorts of chemistries (also in the 'Central Triplet'), including **DNA**
- To note: claims directed to chemically modified oligonucleotides do not cover viral delivery of the oligonucleotide

Overview of key claims – 1

Granted claims in the 1st Axiomer[™] patent family relate to (chemically modified) oligonucleotides that comprise:

- A targeting portion for binding to a target RNA incl. target adenosine
- A recruitment portion (hairpin structure) for recruiting endogenous ADAR to edit the target adenosine

EP 3 234 134 B1	Granted; appeal pending
<u>US 10,676,737</u>	Granted
<u>US 11,781,134</u>	Granted

Claim 17 (US 11,781,134):

A method for making a change in a target RNA sequence in a human cell, comprising the steps of:

- introducing into the cell an oligonucleotide construct that is sufficiently complementary to bind by nucleobase pairing to the target RNA sequence, wherein the target RNA sequence comprises a target adenosine;
- allowing the formation of a double-stranded structure of the oligonucleotide construct with the target RNA sequence upon base pairing;
- allowing the double-stranded structure of the oligonucleotide and the target RNA sequence to recruit an hADARI or hADAR2 enzyme naturally present in the cell;
- allowing the hADARI or hADAR2 enzyme to perform deamination of the target adenosine to an inosine in the target RNA sequence.

Overview of key claims – 2

Granted claims in the 2nd Axiomer[™] patent family relate to oligonucleotides that do **not** have a hairpin structure, but instead have one or more wobbles and/or mismatches, and chemical modifications in the base, ribose sugar and/or linkage to increase stability and are still able to recruit **endogenous** ADAR to edit the target adenosine.

<u>US 10,988,763</u>	Granted
<u>US 11,649,454</u>	Granted
<u>US 12,018,257</u>	Granted

Target-specific claims are directed to:

- An AON capable of forming a double stranded complex with a target RNA in a cell, wherein: the target RNA encodes **alpha1- antitrypsin** (A1AT), LRRK2, or the target RNA is encoded by the IDUA gene
- The AON is complementary to a target RNA region comprising a target adenosine
- The AON comprises one or more nucleotides with **one or more sugar modifications**
- The AON does <u>not</u> comprise a portion that is capable of forming an intramolecular stem-loop structure that is capable of binding an ADAR enzyme
- The AON is shorter than 100 nucleotides
- The AON optionally comprises 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 mismatches, wobbles and/or bulges with the complementary target RNA region, and, wherein formation of the double stranded complex between the AON and the target RNA results in the deamination of the target adenosine by an ADAR enzyme present in the cell

Overview of key claims – 3

Granted claims in the 3rd Axiomer[™] patent family relate to oligonucleotides that do **not** have a hairpin structure, but have **chemical modifications** in the base, ribose sugar and/or linkage to increase stability and are still able to recruit **endogenous** ADAR to edit the target adenosine.

EP 3 507 366 B1	Granted; appeal pending
<u>US 10,941,402</u>	Granted
<u>US 11,851,656</u>	Granted
<u>US 12,203,072</u>	Granted

Claim 1 (US 11,851,656):

An antisense oligonucleotide (AON) comprising a Central Triplet of 3 sequential nucleotides, wherein

- the AON is capable of forming a double stranded complex with a target RNA molecule in a cell comprising a target adenosine;
- the nucleotide directly opposite the target adenosine is the middle nucleotide of the Central Triplet;
- 1, 2 or 3 nucleotides in the Central Triplet comprise a sugar modification and/or a base modification to render the AON more stable and/or more effective in inducing deamination of the target adenosine; with the proviso that the middle nucleotide does <u>not</u> have a 2'-O-methyl modification;
- the AON does <u>not</u> comprise a 5'-terminal O6-benzylguanosine;
- the AON does <u>not</u> comprise a portion that is capable of forming an intramolecular stem-loop structure that is capable of binding a mammalian ADAR enzyme present in the cell; and
- the AON can mediate the deamination of the target adenosine by the ADAR enzyme.

Axiomer[™] EON treatment led to NTCP Q68R variant in WT hepatocytes

Editing of NTCP RNA modulates BAs reuptake in a dose dependent fashion

BAs: Bile acids, NTCP: Na-taurocholate cotransporting polypeptide, BAs mentioned in this experiment are specifically Tauro-nor-THCA-24-DBD. SLC10A1 is the gene that encodes for NTCP protein. Reference: Cnubben, N. et al. (2024) ASGCT 27th Annual meeting abstracts, Molecular Therapy. Volume 32, Issue 4, 1 – 889 (Abstract 705, p. 355)

Progr® IT'S IN OUR RNA