QR-010
An RNA therapy, restores CFTR function using *in vitro* and *in vivo* models of ΔF508-CFTR

Wouter Beumer, PhD
Sr. Scientist Pharmacodynamics & Immunology

ECFS 2015 – June 11, 2015
Forward Looking Statements and Disclaimer

This presentation contains forward-looking statements that involve substantial risks and uncertainties. All statements, other than statements of historical facts, contained in this presentation, including statements regarding our strategy, future operations, future pre-clinical and clinical trial plans, future financial position, future revenues, projected costs, prospects, plans and objectives of management, are forward-looking statements. The words “aim,” “anticipate,” “believe,” “estimate,” “expect,” “intend,” “may,” “plan,” “predict,” “project,” “target,” “potential,” “will,” “would,” “could,” “should,” “continue,” and similar expressions are intended to identify forward-looking statements, although not all forward-looking statements contain these identifying words.

Forward-looking statements represent our management’s beliefs and assumptions only as of the date of this presentation. We may not actually achieve the plans, intentions or expectations disclosed in our forward-looking statements, and you should not place undue reliance on our forward-looking statements. Actual results or events could differ materially from the plans, intentions and expectations disclosed in the forward-looking statements we make. The forward-looking statements contained in this presentation reflect our current views with respect to future events, and we assume no obligation to update any forward-looking statements except as required by applicable law. These forward-looking statements are subject to a number of risks, uncertainties and assumptions, including those that may be described in greater detail in the Registration Statement on Form F-1 (including the prospectus) that we have filed with the U.S. Securities and Exchange Commission. We have included important factors in the cautionary statements included in that prospectus, particularly in the Risk Factors section, that we believe could cause actual results or events to differ materially from the forward-looking statements that we make.
QR-010 restores CFTR activity in vitro:

Ussing Chamber

QR-010 restores CFTR activity in vivo:

NPD + SSA

Delivery of QR-010:

Uptake + Biodistribution + Mucus Diffusion
QR-010 Improves CFTR Activity in Primary F508del HBE Cells

The Effect of QR-010 on CFTR Function is Dose-Dependent

QR-010 restores CFTR function in primary F508del HBE cells *in vitro* in a dose-dependent manner.
QR-010 Restores CFTR-Function in F508del-CFTR Mice as Assessed by NPD

Beumer et al. (2014). Ped Pulm 49(S38):227-228. (NACFC 2014)
QR-010 Restores CFTR-Function in F508del-CFTR Mice in a Dose-Dependent Manner

Beumer et al. (2014). Ped Pulm 49(S38):227-228. (NACFC 2014)
Pulmonary Administration of QR-010 Restores CFTR Function in the Salivary Glands of F508del-CFTR Mice

Beumer et al. (2014). Ped Pulm 49(S38):227-228. (NACFC 2014)
Pulmonary Delivery of QR-010 Results in Systemic Exposure.

QR-010 is Taken up by the Airway Epithelium

Negative Control (Cy5) 24hrs 48hrs 3 days 7 days 14 days

Cy5-labeled QR-010 in Red – DAPI in Blue

Cy5-Labeled QR-010 Diffuses Through CF-like Mucus

Cy5-labeled QR-010 in red. Calcein stained cells (GFP antibody in Green). Pictures were taken every 2 seconds.
Fast Diffusion of Cy5-labeled QR-010 Through CF-like Mucus

- Within minutes the max. Cy5 signal is reached at the HBE cell layer.
Conclusions

• QR-010 results functional restoration of CFTR activity in:
 ✓ Primary F508del HBE cells as assessed by Ussing chamber.
 ✓ F508del-CFTR mice as assessed by NPD
 ✓ F508del-CFTR mice as assessed by SSA.

• Pulmonary administration of QR-010 shows body-wide distribution and uptake in extra-pulmonary organs.

• QR-010 diffuses quickly through CF-like mucus
Acknowledgements

ProQR Therapeutics
• Tita Ritsema
• Jim Swildens
• Vera Brinks
• Noreen Henig
• Gerard Platenburg
• Herma Anthonijsz
• Patricia Biasutto
• Marko Potman
• Charlotte van Putten
• Katarzyna Lipinska
• Maaike van Berkel
• Bianca Matthee
• Miranda Koppelaar
• Andre Schmidt
• Crystal Anglen
• Nicolas Lamontagne
• Brian Sproat
• Art Levin

Erasmus MC Rotterdam
• Hugo de Jonge
• Bob Scholte

Université catholique de Louvain
• Teresinha Leal
• Mathilde Beka
• Nadtha Panin

UNC Chapel Hill
• Brian Button

Cystic Fibrosis Foundation

The Netherlands Enterprise Agency (RVO) for InnovatieKrediet IK12062.
An RNA therapy, restores CFTR function using *in vitro* and *in vivo* models of ΔF508-CFTR

Wouter Beumer, PhD
Sr. Scientist Pharmacodynamics & Immunology

ECFS 2015 – June 11, 2015